Machine Learning

An introduction

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”
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While there is no formal definition, an early attempt is the following intuition:

“Machine learning programs can perform tasks

without being explicitly programmed to do so.”
[Arthur Samuel, US computer pioneer 1901-1990]
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What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

"A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as

measured by P, improves with experience E.”
[T. Mitchell, “Machine Learning” 1997]

“Little Peter is said to learn from traveling around with
respect to finding his way home and the time it takes, if his
ability to find his way home, as measured by the time it
takes, improves as he travels around.”

Under all circumstances, ML allows the analysis and understanding of data,
that is complex in terms of both size, dimensionality, quality, and relations [TP].
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The Data “Deluge”

Shown is the total amount of data created, captured, and copied.
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Data volume in ZetaBytes

However, only a small portion (~2%) of this data is stored for a
longer period of time.
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ML and the Data “Deluge”

The amount of data in the
world is growing very fast.

In order to consider this data,
Machine Learning (ML) has
become a standard tool.

This is due to the easy access
to large data sets, but also the
growth in data storage and
processing capabilities.

By now ML can also consider
text, images, sound, etc.
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AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT
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Humans vs. ML
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.
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That is essentially what Machine Learning has enabled! y
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Dimensionality and Complexity

Humans & Computers are good at seeing/understanding linear data in few
dimensions:

Weight
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Dimensionality and Complexity

However, when the dimensionality goes beyond 3D, we are lost, even for simple
linear data. Computers are not...

Iris Data (red=setosa,green=versicolor,blue=virginica)
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.
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Linear Humans: v/ Humans: =
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Computers, on the other hand, are OK with high dimensionality, albeit the
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That is essentially what Machine Learning has enabled! )






This illustration is just a silly attempt at complexity.

Q::J Lo - SRl ; ) L) Naturally, I can’t show you high dimensional data!
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: v Humans: +
Computers: v |Computers: v

Non- Humans: v/ Humans: =
linear Computers: (v') |Computers: (V)

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! o
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Two main ingredients:

1. Solutions exists
2. How to find them



Solutions exists

(Technically called Universal Approximation Theorems)
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Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve

that separates these.
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Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve

that separates these.

This could be an example:
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Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve

that separates these.

This could be an example:
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Generally, we want to find a function that does this well!
But how to write such a function?
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Universal Approx. Theorems

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
Answer: Yes — Red
Answer: No — Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.
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Universal Approx. Theorems

Decision tree

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
Answer: Yes — Red '
Answer: No — Blue . 44 y
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Universal Approx. Theorems

Decision tree
A simple function can be sig
. . . bk
obtained simply by asking -
. 2 <
a lot of questions:
Question: Is B > 0.23?
Answer: Yes — Red TS
Answer: No — Blue 1 3 T
. . L @ 2\, e J.""“.'Jr\ ) ¢ ‘."j‘ ) .
This question is illustrated 5 el Xi “ Nl B
© .o P . B »
. . E v .\' ;‘. Ay ‘.‘: .:«
in the drawing by the - VT RN A ]
: : : g o- ¢ O e T e e
horizontal line with red i 1 L N } _E‘-.’,‘;ﬁ’ .
. ' j~ ." - :l .:.-‘: .;- 1
and blue on the sides. e O o
o - .c-:.'_. ~
T .-q P'
A Decision Tree consists -1
of asking many such
questions, corresponding
to setting a lot of lines.
2 1 0 1 2 3
Parameter A




Universal Approx. Theorems
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Universal Approx. Theorems

An alternative method
would be to simply ask
what type (i.e. color) the
majority of the k nearest
neighbours have.

In the drawing k=3,
leading to a rather
“ragged” border.

However, increasing the
number of neighbours
considered to k=30 gives a
more smooth border.

This method is called
“k-nearest neighbours”.
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Universal Approx. Theorems

Other methods are based
on entirely different
principles.

There is a wealth of
different methods.
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Universal Approx. Theorems
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Universal Approx. Theorems

Such approximations typically entails a large amount of parameters, for which

the UATs give no recipe on how to find - only that such a construction is possible.
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Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) *° Let o be a non-
constant, bounded, and monotone-increasing continuous function. Let I,
denote the my-dimensional unit hypercube [0,1]™0. The space of contin-
uous functions on Ip, is denoted as C(ly,). Then given any function
f € C(I,) and € > 0 there exists a set of real constants a;, b; and Wij,
wherei=1,... myand j=1,...,mqp such that we may define

nq my
F(X1,. . Xmy) = Y ai0 (Z w;iX;j + bi) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,

|F(x1, .- Xmy) — (X1, -0, Xmy)| < € (5.7)

for all x1,x2,...,%Xm, that lie in the input space.
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Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) *° Let o be a non-

Summary:

Neural Networks etc. can approximate
functions in any dimension very well!

F(xy,..., Xmy) = Y 4i0 kz w;iX;j + bl-) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,
|F(xq,..., Xmg) — f(x1,. .., Xmy)| < € (5.7)
forall x1,x3,..., Xm, that lie in the input space.
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Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) *° Let o be a non-

Summary:

Neural Networks etc. can approximate

functions in any dimension very well!
F(xy,..., Xmy) = Zaia Z w;iXj + b; ) (5.6)

“Deep Learning is not as impressive as you think...
it's mere interpolation resulting from glorified curve fitting”

| Yann Lecun, 2021]

forall x1,x3,..., Xm, that lie in the input space.
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Universal Approx. Theorems

One main ingredient behind ML are Universal Approximation Theorems (UAT).

These imply that Neural Networks can approximate a very wide variety of
functions given simple function constraints and enough degrees of freedom.

This typically entails a large amount of weights, for which the UATs give no
recipe on how to find - only that such a construction is possible.
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Universal Approx. Theorems

One main ingredient behind ML are Universal Approximation Theorems (UAT).

These imply that Neural Networks can approximate a very wide variety of
functions given simple function constraints and enough degrees of freedom.

This typically entails a large amount of weights, for which the UATs give no
recipe on how to find - only that such a construction is possible.

Part of this course is learning how to find these!

Decision Trees and K-Nearest Neighbour algorithms are also capable of
“universal approximation” (i.e. have forms of UATS).

A UAT has also been worked out for Graph Neural Networks... in 2020!
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Universal Approx. Theorems

Regarding UATs, as far as learning is concerned, whether the class is really
universal or not is not overly important:

If one assumes that there is no noise in the training set, then there will still be
infinitely many functions that passes through all training points and not all of
them will have the same error on an unseen point (i.e. the test set).
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Universal Approx. Theorems

Regarding UATs, as far as learning is concerned, whether the class is really
universal or not is not overly important:

If one assumes that there is no noise in the training set, then there will still be
infinitely many functions that passes through all training points and not all of
them will have the same error on an unseen point (i.e. the test set).

Thus, one can ask for what sort of functions the approximation applies.
All differentiable functions? Typically, NNs are restricted to this class.
All continuous functions ? All measurable functions? All computable functions?

As it turns out, the real deal is characterising that class of functions that can be
approximated.

48



Universal Approx. Theorems

Regarding UATs, as far as learning is concerned, whether the class is really
universal or not is not overly important:

If one assumes that there is no noise in the training set, then there will still be
infinitely many functions that passes through all training points and not all of
them will have the same error on an unseen point (i.e. the test set).

Thus, one can ask for what sort of functions the approximation applies.
All differentiable functions? Typically, NNs are restricted to this class.
All continuous functions ? All measurable functions? All computable functions?

As it turns out, the real deal is characterising that class of functions that can be
approximated.

However, we don’t really care about that - we simply assume, that with
enough liberty/complexity, the functions can approximate what we want.
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How to find these

(Technically called Stochastic Gradient Descent)
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Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.
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Goodfellow, lan; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200—220. ISBN 978026203561 3.
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Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

The gradient descent is made stochastic s

(and fast) by only considering a fraction /:*\

(called a “batch”) of the data, when .\ P
calculating the step in the search for ;}"g:
optimal parameters for the algorithm. _ ““

Thl? 2y for StOChaS,tl_C jumping, that g:gm:r?t, Descent gtl':cél?s:tt I[(;escent
avoids local (false) minima.

Goodfellow, lan; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200—220. ISBN 978026203561 3.

52


https://en.wikipedia.org/wiki/Ian_Goodfellow
https://en.wikipedia.org/wiki/Yoshua_Bengio
https://www.deeplearningbook.org/contents/mlp.html#pf25
https://www.deeplearningbook.org/contents/mlp.html#pf25
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780262035613

Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
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Ingredients for ML

So now we know that at least in principle:
e a solution exists (Universal Approximation Theorem) and
e that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:
e actual functions/algorithms for making approximations
e knowledge about how to tell them what to learn
e a scheme for how to use the data we have available
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Ingredients for ML

So now we know that at least in principle:
* a solution exists (Universal Approximation Theorem) and
e that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:

e actual functions/algorithms for making approximations
Boosted Decision Trees (BDTs) & Neural Networks (NNs)

e knowledge about how to tell them what to learn
Loss functions (and now to minimise these)

e a scheme for how to use the data we have available
Training, validation, and testing samples & Cross Validation
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Types of ML



Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

Meaningful
Compression

Structure |mage

. i s T Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

. o i i Diagnostics
Visualistaion Reduction Elicitation Detection Classification &

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
L
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised SuperVised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

S, Lcarning
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life expectancy
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Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).
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Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

But of course also over here! We will be mostly on this side!
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Target of ML



Classification

Null Hypothesis

Alternative Hypothesis

Do Not Reject Null
STATISTICAL

DECISION: ,
Reject Null

REALITY
Null is True Null is False
1-a B
Correct Type Il error
a 1-B
Type | error Correct
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Classification

Null Hypothesis Alternative Hypothesis

Machine Learning typically enables
a better separation between hypothesis

DECISION: , o 1-B
Reject Null
Type | error Correct
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Hypothesis testing

Hypothesis testing is like a criminal trial. The basic “null” hypothesis is Innocent
(called Ho) and this is the hypothesis we want to test, compared to an
“alternative” hypothesis, Guilty (called Hj).

Innocence is initially assumed, and this hypothesis is only rejected, if enough
evidence proves otherwise, i.e. that the probability of innocence is very small
(“beyond reasonable doubt”). This is summarised in a Contingency Table:

Truly innocent Truly guilty
(Ho is true) (H; is true)
Acquittal Right decision Wrong decision
(Accept Ho) True Positive (TP) | False Negative (FN)
Conviction Wrong decision Right decision
(Reject Ho) False Positive (FP) | True Negative (TN)

The rate of FP and FN are correlated, and one can only choose one of these!
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Measuring separation
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ROC CURVE
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http://en.wikipedia.org/wiki/Graph_of_a_function

Which metric to use?

There are a ton of metrics in hypothesis testing, see below. However,
those in the boxes below are the most central ones.

One metric - not mentioned here - is the Area Under the Curve (AUC),
which is simply an integral of the ROC curve (thus 1 is perfect score).
This is sometimes used to optimise performance (loss), but not great!

Predicted condition

True condition

Total S Conditi i Accuracy (ACC) =
e e o) 5 _ ondition positive - .
. Condition positive Condition negative Prevalence = Sy population 3 True positive + % True negative
population 2 Total population
i Positive predictive value (PPV),
Predl.c.ted - False positive, - - ( ) False discovery rate (FDR) =
condition True positive Precision = 3 False positive
i Type | error 2 True positive 5 Predicted condition positive
positve 3 Predicted condition positive
Predicted ) . . e
- False negative, . False omission rate (FOR) = Negative predictive value (NPV) =
condition True negative 3 False negative = True negative
i Type Il error 3 Predicted condition negative < Predicted condition negative

True positive rate (TPR), Recall, Sensitivity, False positive rate (FPR), Fall-out,

probability of detection, Power probability of false alarm Positive likelihood ratio (LR+) = %
_ __ 2 True positive _ __ 2 False positive Diagnostic odds r _
~ Z Condition positive ~ 2 Condition negative ratio (DOR) 1 Score =
Specifici o . Precision - Recall
pecificity (SPC), Selectivity, True _ LR+ 2 BrecisioneaRecall

False negative rate (FNR), Miss rate . = [R=
_ _3 False negative negative rate (TNR) Negative likelihood ratio (LR-) = .m—g LR
~ Z Condition positive Z True netlvg _

https:/ /en.wikipedia.org /wiki/Receiver_operating_characteristic
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Matthew’s Correlation Coefficient

Given a Contingency Table:

Got well Remained ill
Medicin 28 5
No Medicin 19 9

One of the commonly used measures of separation the MCC, which
(in this case) is the Pearson @, and related to the ChiSquare:

TP x TN — FP x FN
\/(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

MCC =

Read more at:
https:/ /en.wikipedia.org /wiki/Phi_coefficient

However, when optimising an algorithm and giving continuous
scores in the range ]0,1[, there are other things to consider (see talk on
Loss Functions).


https://en.wikipedia.org/wiki/Phi_coefficient

The linear analysis case
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Simple Example

Problem: You want to figure out a method for getting sample that is mostly male!
Solution: Gather height data from 10000 people, Estimate cut with 95% purity!

A

Male

Female

Cut

Height
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Simple Example

Additional data: The data you find also contains shoe size!
How to use this? Well, it is more information, but should you cut on it?

Male 1 Male
Female Female
\ Cut Cut?
N > A >
Height Shoe size

The question is, what is the best way to use this (possibly correlated) information!
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Shoe size

Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
\ A A
) Q
N N
Q Q
o o
& &

Male Male Male

Female Female Female
Cut? Cut!? Cut!?
Height Height Height

The latter approach is the Fisher discriminant!

It has the advantage of being simple and applicable in many dimensions easily!
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Shoe size

Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
| This is what would ol This is actually ol
be a typical human | .¥ | | how the tree based N
and non-ML exercise! | o methods works! )
2 2
v v
Male Male Male
Female Female Female
Cut! Cut? Cut?
> > >
Height Height Height

The latter approach is the Fisher discriminant!

It has the advantage of being simple and applicable in many dimensions easily!
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Separating data

Fisher’s friend, Anderson, came home from picking Irises in the Gaspe peninsula...
180 MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

Table I

g
Iris setosa Iris versicolor Iris virginica

Sepal | Sepal ; Petal | Petal | Sepal | Sepal | Petal | Petal | Sepal | Sepal | Petal | Petal

length | width | length | width | length | width | length | width | length | width | length | width

51 35 1-4 0-2 7-0 32 47 -4

4-9 3-0 1-4 0-2 64 32 45 1-5

47 3-2 1-3 0-2 69 31 49 1-5

46 | 31 15 | 02 | 55 | 23 | 40 | 13

Qe e g e
<1 =1 00

-
40 I
44 1
3-9 1
35 1
3-8 1

cocog
Lo

Pt et i pod

4
-5
0
-5

32
3-0
38
2:6
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Fisher’s Linear Discriminant

You want to separate two types/classes (A and B) of events using several

measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

F=wyg+w-x

Q: How to choose the values of w?
A: Inverting the covariance matrices:

Iris Data (red=setosa,green=versicolor,blue=virginica)

L l. :; L - 1 ..’ L 1 1 .‘... l.- '
v " i i
L ] ‘.r... ““. ." o .... b
Sepal.Length ¢ ’ofﬂ; I -g“' &k |' L
> AL R + g
° o.:. "0,?." ;: .'. °

. 2o

w7 eeEle o0 o *
o |28 D 2
« q‘ & ® h* -..
g s: ... °

° ° '..

Sepal . Width

W= (Za+25)"" (Ga—iB)

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.

°
&8
°

#

o .‘:". o* . .

Petal.Length

ﬂd—.

L
oy
° °
g

..2L.

. 'A‘ ) oo
S : :’é‘;ﬁ"

Petal.Width

S °
e o
L
T T T T T T
45 55 65 75

xxxxxxx
1 2 3 4 5 86 7
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Fisher’s Linear Discriminant

You want to separate two types/classes (A and B) of events using several
measurements.

Q: How to combine the variables?

A: Use the Fisher Discriminant: : ‘
ments are given. We shall first consider the question: What linear function of the four

measurements X =, 2+ Ay + Ag g+ Ay

will maximize the ratio of the difference between the specific means to the standard
deviations within species? The observed means and their differences are shown in Table 11.
Q: How to choose the values of w? 1,}‘- .;,?,_-,-. Sepal Width % . ;ﬁ:’i J_L M
A: Inverting the covariance matrices: . # S RN

Iris Data (red=setosa,green=versicolor,blue=virginica)

3 e . 0® | ©
wed - N X ’ o i‘.pl.!" °
, e = e N S O | B -l
W= (¥a+3p) (fa—ip) | < e |
| .:‘i.l:;i:'. s i.og::g' l-::f.
This can be calculated analytically, and ] '_-'g,.‘:e-%' " e o petalwidin
incorporates the linear correlations into =1 3., | g

11111111111111
1 2 3 4 5 86 7

the separation capability.




Fisher’s Linear Discriminant

The details of the formula are outlined below:

You have two samples, A and B,
that you want to separate.

For each input variable (x),
you calculate the mean (p),
and form a vector of these.

AN

@ = (Sa+32p) (fa— i)

Using the input variables (x),
you calculate the covariance
matrix () for each species
(A/B), add these and invert.

Given weights (w),
you take your input

variables (x) and \
_|_

combine them f’ — Wy
linearly as follows:

?17 . T F is what you base
your decision on.
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The non-linear case
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Non-linear cases

While the Fisher Discriminant uses all separations and linear correlations,

it does not perform optimally, when there are non-linear correlations present:

A
Background
Signal

AN

Use Fisher

>
X

A

Don'’t Fish
Background ont oee TENe

Signal

>
X]

If the PDFs of signal and background are known, then one can use a likelihood.
But this is very rarely the case, and hence one should move on to the Fisher.

However, if correlations are non-linear, more “tough” methods are needed...
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(Boosted) Decision Trees

an m e [
Can become very CompleX yes) is sex male? (5]

Good for discrete problems. / L

\survived )
“Good for all problems!!!” 's age > 9"i 073 36%
Not always highest efficiency, (died) sibsp > 2.57
though... v et / E
: . Idled ) Suwlved )
Boosting adds to separation. 505 2% 280 o%

* Example decision tree on a simple algorithm for predicting survival of Titanic!
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Boosted Decision Trees (BDT)

E is sex male? n

/AN

is age > 9.57 ( survwed )

/ \ 0.73 36%
is sibsp > 2 57?

0. 17 61%

surwved I
0,05 2% 0.89 2%

Dependent variable: PLAY

OUTLOOK ?

sunny / ove;:ast

Play 4
Don't Play 0

WINDY ?

<= 70 > 70 TRUE FALSE

/4 L X

Play 2 Play 0 Play 0 Play 3

Don't Play 0 Don't Play 3 Don't Play 2 Don't Play 0

Decision tree learning uses a decision tree as a predictive model which maps
observations about an item to conclusions about the item’s target value. It is one of
the predictive modelling approaches used in statistics, data mining and machine

learning.

[Wikipedia, Introduction to Decision Tree Learning]
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Neural Networks

Can become very complex.

Good for continuous problems.

Sometimes hard to train!

Very versatile approach that

can also be applied to images,

text, etc.

Easily produces multiple outputs.

NEURONS
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Neural Networks (NN)

NEURONS

INPUT LAYER1 LAYER 2 QUTPUT

In machine learning and related fields, artificial neural networks (ANNSs) are
computational models inspired by an animal’s central nervous systems (in particular
the brain) which is capable of machine learning as well as pattern recognition.

Neural networks have been used to solve a wide variety of tasks that are hard to
solve using ordinary rule-based programming, including computer vision and
speech recognition.

[Wikipedia, Introduction to Artificial Neural Network] 56



Methods (dis)advantages



Method’s (dis-)advantages

Another comparison is done in Elements of Statistical Learning II (ESL II), where linear

methods are not included.

As can be seen,
Neural Networks are
“difficult” in almost
all respects, but
performant.

For trees, the case is
almost the opposite.

However, I don’t agree
with the evaluation

of the predictive power
of trees.

At least not for normal
structured data.

Characteristic Neural] SVM | Trees | MARS | k-NN,
Nets Kernels

Natural handling of data v A 4 A A v

of “mixed” type

Handling of missing values v A 4 A A A

Robustness to outliers in v A 4 A A 4 A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v A 4 A v

Predictive power A A A 4 A

From ESL II, Chapter 10.7 88
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Method’s (dis-)advantages

Another comparison is done in Elements of Statistical Learning II (ESL II), where linear

methods are not included.

As can be seen,
Neural Networks are
“difficult” in almost
all respects, but
performant.

For trees, the case is
almost the opposite.

However, I don’t agree
with the evaluation

of the predictive power
of trees.

At least not for normal
structured data.

For tabular data, I disagree!

Characteristic Neural] SVM | Trees | MARS | k-NN,
Nets Kernels

Natural handling of data v A 4 A A v

of “mixed” type

Handling of missing values v A 4 A A A

Robustness to outliers in v A 4 A A 4 A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v A 4 * A v

Prodictine-poues ot | ( V A

...and others do too [https:/ /arxiv.org/abs/2110.01889]

From ESL II, Chapter 10.7 90




vari

Performance comparison

Left figure shows the distribution of signal and background used for test.
Right figure shows the resulting separation using various MVA methods.

ROC curves:
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var0 Signal efficlency
The theoretical limit is known from the Neyman-Pearson lemma using the

(known/ correct) PDFs in a likelihood.

In all fairness, this is a case that is great for the BDT...
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How to choose method?
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Which method to use?

There is no good /simple answer to this, though people have tried, e.g.:

scikit-learn

classification
algorithm cheat-sheet

NOT
WORKING

NOT
WORKING

et
more
data NO
NO
YES
| <100K
samples

YES

regression

YES

NOT do youhave
WORKING labeled
NO data

few features
should be
important

number of
categories
known

clustering

NOT LLE
WORKING -

dimensionality
reduction
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Which method to use?

There is no good /simple answer to this, though people have tried, e.g.:

scikit-learn

classification
algorithm cheat-sheet

NOT
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NOT
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more
data NO
NO
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YES

regression

YES

NOT do youhave
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NO data

few features
should be
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number of
categories
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NOT LLE
WORKING -
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What is Machine Learning?

THIS 1S YOUR MACHINE (EARNING SYSTEM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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“I keep saying the sexy job in the next

ten years will be statisticians.”
[Hal Varian in 2009, Chief economist of Google, Berkeley professor]
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“I keep saying the sexy job in the next

ten years will be statisticians.”
[Hal Varian in 2009, Chief economist of Google, Berkeley professor]

Well, Hal, what is the sexy job in this decade?
Machine Learning expert/data scientist?!?
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