Graph Neural Networks

Applied Machine Learning, KU
Daniel Murnane - May 8", 2024

3=E UNIVERSITY OF

COPENHAGEN 8/05/2024 Graph Neural Networks — Daniel Murnane 1

Introduction & Goals

* Goals for today:
* Understand point cloud structure
* Understand graph structure I
* Look at some real data that is represented as a graph '

* Understand how to generalize from grid (image) i
to a graph i

* Think about some choices of GNN architectures '

e Zoom in to the Transformer as a kind of GNN

* Have borrowed content from Troels’ slides sy
from last year! T

8/05/2024 Graph Neural Networks — Daniel Murnane 3 NE L

How can we represent data

UNIVERSITY OF

COPENHAGEN 8/05/2024 Graph Neural Networks — Daniel Murnane 3

EEEEEEEE———————————————————————
Data types

* Let’s tidy up our language: There are data types, and data structures

e A data type is an input to our neural network, it falls into one of the
following types

Data
7 ey

Numerical Categorical
Made of numbers Made of words
Age, weight, number of Eye colour, gender, blood type,
children, shoe size ethnicity
Continuous Discrete Ordinal Nominal
Infinite options Finite options Data has a hierarchy Data has no hierarchy
Age, weight, blood Shoe size, number of Pain severity, satisfaction Eye colour, dog breed,
pressure children rating, mood blood type

8/05/2024 Graph Neural Networks — Daniel Murnane 4

Data structures

* Let’s tidy up our language: There are data types, and data structures

e A data type is an input to our neural network, it falls into one of the
following types

e A data structure defines how each component of our dataset is related
* There are many data structures...

8/05/2024 Graph Neural Networks — Daniel Murnane 5

Data structures
O O

e Tabular: Each sample has one entry [Age, height] [Age, height]

Student 1 Student 2

8/05/2024 Graph Neural Networks — Daniel Murnane 6

Data structures - 0‘0 ..0 |
* Tabular: Each sample has one entry e o ®
e Set: Each sample has a variable number of Class 1 Class 2

entries

8/05/2024 Graph Neural Networks — Daniel Murnane 7

Data structures

e Tabular: Each sample has one entry

Student 2 home address
Student 3 home address

* Set: Each sample has a variable number of

entries \ /
1->2 distance 1->3 distance

* Point Cloud: Each sample has a variable
number of entries, with some notion of
distance Clace 1

Student 1 home address

8/05/2024 Graph Neural Networks — Daniel Murnane 8

Data structures

e Tabular: Each sample has one entry

* Set: Each sample has a variable number of entries L ‘Pf':é"xi'f

e Point Cloud: Each sample has a variable number of entries, ! !
with some notion of distance . ‘Pi:e_lg @

* Grid: Each sample has a fixed number of b Ineignooning
entries, binned into a grid, with a natural
distance Image 1

8/05/2024 Graph Neural Networks — Daniel Murnane 9

Data structures

Tabular: Each sample has one entry

Set: Each sample has a variable number of entries

Point Cloud: Each sample has a variable number of entries,

with some notion of distance — -)
Tallest student ortest student
* Grid: Each sample has a fixed number of entries, binned into a ‘ — ‘ — . —
grid, with a natural distance s taller —Is aller ol
* Sequence: Each sample has an ordered list of Clace 1

variable number of entries

8/05/2024 Graph Neural Networks — Daniel Murnane 10

Data structures

e Tabular: Each sample has one entry
* Set: Each sample has a variable number of entries

e Point Cloud: Each sample has a variable number of entries,
with some notion of distance

Wake up Brush teeth Cycle home

* Grid: Each sample has a fixed number of entries, binned into a ‘ — ‘ — . —
grid, with a natural distance 5 minutes 7 minutes 8 hours

later later later

* Sequence: Each sample has an ordered list of variable number

of entries Day 1

* Time series: Each sample has an ordered list
of variable number of entries, with a
neighbor distance given by time

8/05/2024 Graph Neural Networks — Daniel Murnane 11

Data structures

Tabular: Each sample has one entry
Set: Each sample has a variable number of entries

Point Cloud: Each sample has a variable number of entries, with
some notion of distance

Grid: Each sample has a fixed number of entries, binned into a
grid, with a natural distance

Sequence: Each sample has an ordered list of variable number of
entries

Time series: Each sample has an ordered list of variable
number of entries, with a neighbor distance given by time

Graph: Each sample has a variable number of
entries, with neighborhoods given by explicit
pairwise relationships

Student 1 Is friends Student 3

Is friends Is mortal
with enemies with

Student 2

Student 4

Class 1

8/05/2024 Graph Neural Networks — Daniel Murnane 12

Data structures

* Graph: Each sample has a variable number of s i Student 3
entries, with neighborhoods given by explicit @ - @

pairwise relationships \ /
Is friends Is mortal
* A graph is a collection of nodes (objects or i enemies wit

entries) and edges (relationships between each @ O
Object) Student 2

Student 4

* Nodes can have features, edges can have Class 1= Applied ML

features

* A graph may also have graph-level or “global”
properties, e.g. class 1[“topic”] =
“applied ML”

8/05/2024 Graph Neural Networks — Daniel Murnane 13

Data structures

* | encourage you to look at all data structures sfrends Student3
through the eyes of a graph @ - @

Student 2 home address I . I
Pixel 1 Pixel 2

Student 3 home address Is friends Is mortal

<—> ' <> ‘ <> with enemies with

[Age, height] [Age, height] ‘
‘ o \ / . Pixel 3 p|Xe|4 .
e heh Istance 1->3 distance i—> ‘ Student 2 Student 4

1Ne|ghbor|ng
Class 1 Student 1 home address Class 1 = Apphed ML
Class 1 Image 1
Tallest student Shortest student Wake up Brush teeth
@ —@ e
Is taller Is taller Is taller 5 minutes 7 minutes 3 hours
than than than later later later
Class 1 Day 1

8/05/2024 Graph Neural Networks — Daniel Murnane 14

Graph Data

UNIVERSITY OF

COPENHAGEN 8/05/2024 Graph Neural Networks — Daniel Murnane 15

Classic Problems with Graphs

R B

| e
=
f1—&

ADDING MORE. STOPS TBKES
LONGER- BND LONGER- AND LONGER. TO FitaURE i OUT

Knowledge Graph Image
Comprehension Comprehension

Travelling Salesman
Problem

" Valid amino acid

Molecule Clustergraph sequences Folded proteins

=a Q00> 00

Molecular

Protein
Comprehension

Chemistry

8/05/2024 Graph Neural Networks — Daniel Murnane 16

Representing a Graph

* Nodes — a list of node vectors nf, wherei = 0, ..., N,, up to number of
nodes, k =0, ..., N¢ up to number of features

* Edges —an adjacency matrix 4;j, where A;; = 1 when there is an edge

between node i and node j, and 0 otherwise

* In practice, 4;; is mostly Os, so let’s represent it with a more efficient
structure: E;;, which is a list of pairs of node indices

L]’
Age: 20

Age: 75 Height: 170cm 20 170 0 1 1 11
Height: 190cm K — 50 160 A = 1 0 0 O
Age: 50 l 35 150 H 1 0 0 1
Height: 160cm |75 190. 1 0 1 0.

Age: 35 0 0 0 2 1 2 3 3

Height: 150cm Eij - [1 23 30 0 0 2]

8/05/2024 17

Removing the Grid

UNIVERSITY OF

COPENHAGEN 8/05/2024 Graph Neural Networks — Daniel Murnane 18

Recall the CNN

* Remember how the image convolution worked:

X
B
na n1

G 0 1
- (02 0.1 % Wi Wi
O = R |)
o X,y 0.1 0.1
: wy wh

0.1 -
i =123
Image W

J =1, ..., Nnidden

8/05/2024 Graph Neural Networks — Daniel Murnane

19

Recall the CNN

* Let’s rewrite this big tensor multiplication into smaller pieces...

X
B
na n1

G 0 1
- (02 0.1 % Wy Wi
O = R |)
80 X, 0.1 0.1
g ’ wi W

0.1 -
i=1,2,3
Image W

J =1, ..., Nnidden

8/05/2024 Graph Neural Networks — Daniel Murnane

20

Recall the CNN

* Now this looks like each pixel in the window is passed through a
simple linear layer of a

feedforward NN 0.4 0.1

0.2 0.1

0 1
X Wi X Wy

0.1 0.1

0.4 X lel

0.1

8/05/2024 Graph Neural Networks — Daniel Murnane 21

.
Recall the CNN

* Now this looks like each pixel in the window is passed through a
simple linear layer of a

feedforward NN
* Once we have passed o1 I -
each pixel through, we

aggregate (in this case
sum) the updated pixels

- -

0.1 0.7

8/05/2024 Graph Neural Networks — Daniel Murnane 22

Recall the CNN

* Now this looks like each pixel in the window is passed through a
simple linear layer of a

feedforward NN

* Once we have passed I -
each pixel through, we
aggregate (in this case
sum) the updated pixels -

* The “center” of our 2x2 e 1
neighborhood is updated I \
with the convolution 0.1 0.7

outputs

8/05/2024 Graph Neural Networks — Daniel Murnane 23

.
Recall the CNN

 The “center” of our 2x2
neighborhood is updated
with the convolution
outputs

—I

Bl
* These centers form the -_I
—I

B

)
=

inputs for the next convolution,
which again happensinank X k
grid neighborhood

=

0.2

)
=
=

8/05/2024 Graph Neural Networks — Daniel Murnane 24

Now, let’s throw away the grid structure
* Grids are convenient for images, —I
but the world is not a grid -

* Instead of “pixels”, let’s call each
hidden vector now a “node”

8/05/2024 Graph Neura I LH— Daniel Murnane

Now, let’s throw away the grid structure

* Grids are convenient for images,
but the world is not a grid

* Instead of “pixels”, let’s call each
hidden vector now a “node”

e Let’s also make each node the - I

center of its own neighborhood %

e And let’s do our convolution over Q —I

nearby nodes
0.2

* E.g. this would be one such neighborhood: .

-
-
-

8/05/2024 Graph Neural NRCTWOIRS — Daniel Murnane 26

One final tweak!

* Let’s also make each node the
center of its own neighborhood

* And let’s do our convolution over
nearby nodes %
e E.g. this would be one such neighborhood

* In the CNN, each pixel had its own
dedicated W. This was easy, because
every neighborhood had a fixed
number of pixels

—I/
-XWMN

* Now there are arbitrary number of nodes in each neighborhood, let’s
be even simpler and use the same Wy, for every node multiplication

8/05/2024 Graph Neural Networks — Daniel Murnane 27

.
This is @ GNN!

* It’s a simple one — a graph convolution network _I

* The hy; X Wy, n step is a “node update” - X Wun
e Passing these node features to the % /
center node is called “message —I X Wuyn
passing” o’
e Summing all the features is ™ I X Wayn

called “aggregation” I / -
* Node update, message - X Wyn
passing and aggregation are

the building blocks for basically all graph neural networks

8/05/2024 Graph Neural Networks — Daniel Murnane 28

GNN Architectures

UNIVERSITY OF

COPENHAGEN 8/05/2024 Graph Neural Networks — Daniel Murnane 29

Message passing

* We can create a language for convolutions that will work for almost
every other ML model

* It’s called “message passing”, and it has two parts: calculate the
message between pairs of objects, then aggregate the messages
coming into each object’s neighborhood

* For a graph, a message is the features that are passed along an edge —
a learnable function that takes in the two nodes on either side of that

edge
* f.is alearnable function (feed-
I £, (nlc\):, nllc) I fokrward neural r.1etwork)
N0 ————— 170 * n; are the Ny hidden channels
0 1

of the N; nodes in the graph

8/05/2024 Graph Neural Networks — Daniel Murnane 30

Aggregation & Permutation Invariance

* We have a message function m;; = f, (nﬁ‘, n]'-‘), so how do we combine
these messages around each node?

* We could stack them together and pass them I
through a FFNN? E.g. f ([mg1, mp2]) n}

fe(ng, nz

* Two problems:

1. A FFNN has a fixed size, but we might
have any number of incoming fe(ng, n¥)

0

L
MEeSSagesS

n,

2. If we switch the order that we receive the messages (which is
meaningless), the output of the FFNN will be different!

8/05/2024 Graph Neural Networks — Daniel Murnane 31

Aggregation & Permutation Invariance

* What we are looking for is a “permutation invariant” way to combine
any number of incoming messages

* There are a few ways to do this, but the I
simplest is to take the sum ng
(or mean/max/min) fo(ng, ng

* The choice of aggregation function
is a hyperparameter (like the
CNN pooling step) ng

fe(ng, n1)

n,

8/05/2024 Graph Neural Networks — Daniel Murnane 32

Node update

* The final step is to pass this aggregated information through

a node FFNN

* The f, is an edge-wise function/network, it is I
the same for every edge ng

* The f,, is a node function/network, felno.ms

it is the same for every node

* Note that even though the function £, (nk, nk
is the same across all nodes or o
edges, the outputs of the function K = F (k) + o (nk nk)

depend on the node or edge features

n,

8/05/2024 Graph Neural Networks — Daniel Murnane 33

Let’s put it all together...

Equations Plctures GNN Blocks Code

[_ k k
1- CaICUIate mij - fe (ni) nj)’ nOde 1 def message passing(self, x, start, end):
messages Where there are edges n edge features = torch.cat([x[start], x[end]], dim=1)
] . message m01 ie;i:lz.edge_networ‘k(edge_featur'es}
between i — j N
€ > f e

nOde 0 Edge block | Node block | Global block

1. Calculate
messages

Let’s put it all together...

Equations Plctures GNN Blocks Code

L= k pk node 1
mij - fe (ni ’ nj), def message passing(self, x, start, end):
Where there are edges n edge_features = torch.cat([x[start], x[end]], dim=1)
m e Ssa ge mO 1 ie;i:lz.edge_networ‘k(edge_featur'es}

betweeni — j o IR £,

Edge block | Node block | Global block

node O

2. Aggregate
messages

node 3 node?2

@ @ node 1
af = Z(mf]) XZ/‘ n ¥ = scatter_add(e, end)
j @

e felz

Moy + Moz + Mp3 Edge block = Node block | Global block

1. Calculate
messages

Let’s put it all together...

Eeuations Plctures

l _ k .k
mij — fe(ni ’nj), node 1
where there are edges
. . message Mgy
betweeni — j O

node O

GNN Blocks

Cocle

def message passing(self, x, start, end):

n edge features = torch.cat([x[start], x[end]], dim=1)

e—}fe

Edge block | Node block | Global block

e = self.edge_network(edge_features)

2. Aggregate

node 3 node?2

@ @ node 1
J

messages n 2 ¥ = scatter add(e, end)
et fe
Mo + Moz + M3 Edge block = Node block | Global block
3. Update
rk __ [k
nodes n; = fn(ai; ni) ‘ n > fn »n’ x = self.node_network(x)
Updated node 0 et feo pool
8/05/2024

Edge block | Node block | Global block

36

Let’s put it all together... with an examplel

Let’s assume our “learned” message function is just:

ko Kk kK Kk
fo(nf,nf) = nf —n;

and our “learned” node update function is just:

1
fulal,nf) = 2 (@t +)

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 75
Height: 190cm

Age: 35
Height: 150cm
20 170]
nk = |20 160 000 2 1 2
N] T O
75 190/

Ej=|

o w
DN W

1. Calculate l k .k
m;; = fe(nl-,nj)
messages

0021233]
2 3 3 0 0 0 2

mb, = [20 — 50,170 — 160] = [—30, 10]

«— P O

Let’s put it all together...

Let’s assume our ”Iearned” message function is just:

k k
fe(nL' ny)=n; —n;

and our “learned” node update function is just:

1
fulal,nf) = 2 (@t +)

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 75
Height: 190cm

Age: 35
Height: 150cm
20 170]
nk = |20 160 000 2 1 2
N] T O
75 190/

oS W

(\ORRON

with an examplel

1. Calculate 1 _ k .k
messages Mij = fe(m Ty)
[0 0 0 2 1 2 3 3
EU"[1 2 33 00 0 2]
mi; =72 52115309 129 (23] 52 [49)

Let’s put it all together... with an examplel

Let’s assume our ”Iearned” message function is just:

k k
fe(nw ny)=n; —n;

and our “learned” node update function is just:

1
fulal,nf) = 2 (@t +)

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 75
Height: 190cm

Age: 35
Height: 150cm
(20 170]
50 160
0O 0 0 2 1 2
351500 By=[] 5 3 3 0 ¢
|75 190

oS W

1. Calculate I _ k ok
messages myy = fe(ni, 1)
By=[0 0021233
H 1 2 3 3 0 0 0 2
my; = (30 58] (55 09) 120 15 530 45)
2. Aggregate L I
messages ai = z(mij)
J

l
ah = mby + mf, + mi;

_l1O] lzl()S] lzo]
=[]

DN W
—_—

Let’s put it all together... with an examplel

Let’s assume our “learned” message function is just:

fe(nf,n]’-‘) =nf — n]’-c 1. Calculate m%j _ fe(nf,n'-“)
“ ” L messages
and our “learned” node update function is just:
1 000 2 1 2 3 3
fulafni) = 5 (af + 1) El’f:[1 2 3300 0 2]
Ll
Age: 75 HEight: 170cm l] _[[0] [] [:2(5) [:ig] [—330] [;g]' [;g][ig]]
Height: 190cm
Age: 50 2. Aggregate]]
Height: 160cm messages a; = z(mij)
J
Age: 35 1 _ [—100 30 —251 195
Height: 150cm %= [[10]' [—10] ’ [—20] ’ [60 |
(20 170]
50 160
nk = 35 150 E"_lo 002 1 2 3 3]
ij —
75 190 1 2 3 3 0 0 0 2

Let’s put it all together... with an examplel

Let’s assume our “learned” message function is just:

K nk) = nk —nk
fo(n| ,nj) =n; —n, 1. Calculate mf] _]Z(nf,nf)
and our “learned” node update function is just: MESSALES
1
k kY _ k k
fn(ai'ni)_z(ai +n;) Eij =

Age: 20
Height: 170cm

Age: 50
Height: 160cm
Age: 35

Height: 150cm

Age: 75
Height: 190cm

[0 002 12 3 3]
1233000 2
A
mi; =50 0T 5 ol e S [6D

a% = z(m%j)

J

=170 1125 1550) Lol

2. Aggregate
messages

90 170 3.Up(;1|ate =fn(a§,n£"‘)
nodaes
nf = 3(5) 128 E"_lo 00212 33
|75 190 72330002 n's = fu(ao,ng ([1180] [170) [9]

Let’s put it all together... with an examplel

’ “ ” ion is iust: 1. Calculate l k .k
Let’s assume our “learned” message function is just: m}; = fe(ni 1)

koo kY _ ok ok messages
fo(nf,nf) = nf —n; 8

and our “learned” node update function is just:

E"_l00021233]
A Y11 2 33 00 0 2
fn(ai'ni) :E(ai +n;) l l l l l

b

I 1-307 [—15] [—55] [—
Age: 20 My =50] ol 50 Caol 250] ol Bl o]
Age: 75 Height: 170cm
ight: 2. Aggregate
Height: 190cm - ,
/9 Age: 50 messages ai _Z(mij)
Height: 160cm L [[_1()0] [20] [_25] [95]
! 10 I’L—=101"1-201"160
Age: 35
Height: 150cm 3. Update n'{-‘ _ fn(a%,nf)
20 170] nodes 40 o0
50 160
35 150 E.. = [0 O 0 2 1 2 3 3] n'k — 40 75
=11 2 3 3 0 0 0 2 l 5 65
75 190 | 85 125

GNN tasks vs. architectures

e Just like with the CNN, the choice of GNN convolution is usually
separate from the final training task

* Any GNN convolution that does message passing, and updates hidden
node features, allows us to predict:

/G 0 0 Class topic?
/riendship status? /
Age: ?

Height: ?

Node features Edge features Global features

8/05/2024 Graph Neural Networks — Daniel Murnane 43

The Transformer as a GNN

UNIVERSITY OF

COPENHAGEN 8/05/2024 Graph Neural Networks — Daniel Murnane 44

Let’s build a very specific graph convolution...

* For each node, attach three sets of hidden features: K, Q,V
KZJ QZJVZ

/GK]J Ql; V]_

KOI QOI VO

K3,Q3,V3

8/05/2024 Graph Neural Networks — Daniel Murnane 45

Let’s build a very specific graph convolution...

* For each node, attach three sets of hidden features: K, Q,V

I i K5, Q,, V.
e Define a message function on each edge: 2, 02, V2

mys3

K3, Q3, V-
m;; = fo (K, Qf) = softmax (2 K{‘Q}‘) ool ?@
k Mos - K1, Q1,1

KOJ QOI VO

8/05/2024 Graph Neural Networks — Daniel Murnane 46

Let’s build a very specific graph convolution...

* For each node, attach three sets of hidden features: K, Q,V
* Define a message function on each edge:

mi; = fo(Ki" QF) = Softmax(KikQI'(>
J J Z J /9

* Define an aggregation function around each node:

Vomgy1+Vomg, + Vomgs

af = D] ml-jij, this is just a weighted sum

8/05/2024 Graph Neural Networks — Daniel Murnane 47

Let’s build a very specific graph convolution...

* For each node, attach three sets of hidden features: K, Q,V
* Define a message function on each edge:

mi; = fo(Ki" QF) = Softmax(KikQI'(>
J J Z Jj /@

* Define an aggregation function around each node:
L . A (a, £l @), £ (a;
af =3 ml-jV]-k, this is just a weighted sum @i (i) f (20

* The node update is just FFNNs to get the next K', Q', V'

8/05/2024 Graph Neural Networks — Daniel Murnane 48

~ -

Let’s build a very specific graph convolution...
* For each node, attach three sets of hidden features: K, Q,V

* Define a message function on each edge:

o

™~

AE

S
\

\
\
DI

/
AN
N

R

)

///%

T

5

S

O ,
NJjIH :

AR
| 7

X
il

£Xa), £.2(a), £V (a)

this is just a weighted sum

* The node update is just FFNNs to get the next K', Q', V'

Graph Neural Networks — Daniel Murnane 49

8/05/2024

The Landscape of Geometric Deep
Learning

https://arxiv.org/pdf/1809.02942.pdf

Linearly

Grid
Connected

adjacency

MLP + 1-pixel
Equivalency

https://citeseerx.ist.psu.edu/viewdo
c/download?doi=10.1.1.554.4395&r
ep=repl&type=pdf

Fully-
Connected

https://github.com/murnanedaniel/GNN-as-Transformer-as-GNN/blob/main/0-Transformer vs GNN Annotated.ipynb
https://arxiv.org/pdf/2012.09699.pdf 50

Cellular

Automata

<+ = reduces to

https://arxiv.org/pdf/1809.02942.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf

Case Studies

UNIVERSITY OF

COPENHAGEN 8/05/2024 Graph Neural Networks — Daniel Murnane 51

O
Google Maps

* DeepMind worked with Google
Maps developers to apply a
GNN to estimate travel time

* Improved estimates by up to
50% in large cities

* Maps are really hard to
optimize on, as they exhibit
combinatorial behavior

* GNNs can give fast,
approximate solutions to map
problems

8/05/2024 Graph Neural Networks — Daniel Murnane 52

Edge Classification for Particle Tracking

* In the ATLAS experiment, we need to connect points in the detector to reconstruct particle
tracks
* [t’s a massive connect-the-dots game, with 300,000 dots to connect, every 25 nanoseconds

—— detector layers % real hit position % reconstructed hit position - -» real trajectory — fitted track

53

Edge Classification for Particle Tracking

% Graph Neural Connected
leeﬂai:::\g -° ﬁ e, Components
Module .JT,%?P N o Connected
Ma DZ:: s , Components
P ‘e E + Walkthrough
Hits Graph Edge Scores Track Candidates
Graph Edge Graph
Construction Classification Segmentation
* |In the ATLAS experiment, we need to connect points
in the detector to reconstruct particle tracks | =
* |t’s a massive connect-the-dots game, with 300,000 :.f\\
A
dots to connect, every 25 nanoseconds 2l
 We are building graph neural networks to do this]

faster than traditional algorithms

8/05/2024

Edge Classification for Particle Tracking

Connected
Components

or

Graph Neural
Connected
Components

< Network
Learning
Module }‘ 41‘,‘# \
Ma
P + Walkthrough

0.02/;;(';0.02 s 0-9‘:92 " 0. To-\az . + ('D.QO‘92 - 0. ~
«;;MQ /" fozo
Hits € € D Track Candidates
Graph u:« Graph

Construction Classification Segmentation

* In the ATLAS experi r' m - E@H]

in the detector to rr gﬂp Ct : |:| - @ @ © ==
* |t’s a massive connect-the-dots game, with 300,000 ::‘\

dots to connect, every 25 nanoseconds "y

 We are building graph neural networks to do this
faster than traditional algorithms T

8/05/2024

Ice Cube neutrino prediction

CEeVUUDE

Laboratory

Digital Optical Module
DOM

86 strings

5160 optical sensors

2820 m

bedrock

J

2

Amundsen-Scott
South Pole
Station
Antarctica

Eiffel Tower 324 m

Neutrino observatory
inside the ice of
Antarctica

Goal is to detect
neutrinos and
measure precisely the
direction they came
from, their energy,
what type of neutrino
they are, etc.

56

Ice Cube neutrino prediction

%f*tlE

In this example:

N pulses = 7 t2

each with (x,y,z,t)
Nfeamres =4

il EC(ih, B2, i)

U1 = [r1y1 21] —mm—m—y

U2 = (22 Y2 22 12

. EC(#y,7s, ir‘u))

U7 = [Z7 Y7 27 17]

Input:

N = Npulses x:Nesns:

8/05/2024

[g11 .- -glNl]
[921 .- -gle]

[971 .- -yml]

Convolution(s):
N = Npulses x N1

T
e
.....
-
.
.

Output: <«—
(10810E/ O zenith, Qazimuth,
XV Ztvertex, €VENE type)

MLP2

Nau — Nfeatures iy Nl

T1y1 21t G11-- -GN, | —>
[:1:2 Y2 22 t2 go21 .. -9‘21\’1] —

2

000000000

['757 Y7 27t7 g1 - - '971\’1] —_— i

000000000
0000000000000

MLP1:

Nan — Nman}’ — Ny

Concatenation:
N = Npulses x Nan

D3RRI
.- g,
A1... AN,
[Vl "\/Nall]

sum(), max(A),
mean(/z) min(V)

[h-ll s h'lNuu.]

[]1,21 o thuu]

[11»71 <o hTNuu]

Aggregation:
N =4xNu

57

Ice Cube neutrino prediction

Vi 1§ :ts §
wf*t)\ts

/[R ZNau]
In this example: — [/1,1 o llNall]
Npulses =7 t2 t4 \ /\]
each with (x,y,z,t) \ * A\Nau
Nfeatures =4 x \/Na[l]
qum(E) max(A),
N = Near 24 1\1 N mean(/ min(V)
@@ -availapiet: -
vy = [z2 Y2 22 fz ToY2 2212 §21 --- J2N, |- $5 o|=> =N thuu]
. EC(v4,05,7) g g g
S A © o ©
o o ©O
o 4 o
V7 = [17 Y7 =z] [971 .- -97N1] [-’If7 Yr 27ty gn - - -97N1J — 4 |l —> [7?»71 ce h?Nu“,]
o
Input: Convolution(s): Concatenation: MLP1: Aggregation:
N= Npulses x: Nieatues N == Npulses x N1 N = Npulses x Nan Naj — Nman_\' — N.n N =4x N

8/05/2024

58

	Slide 1: Graph Neural Networks
	Slide 2: Introduction & Goals
	Slide 3: How can we represent data
	Slide 4: Data types
	Slide 5: Data structures
	Slide 6: Data structures
	Slide 7: Data structures
	Slide 8: Data structures
	Slide 9: Data structures
	Slide 10: Data structures
	Slide 11: Data structures
	Slide 12: Data structures
	Slide 13: Data structures
	Slide 14: Data structures
	Slide 15: Graph Data
	Slide 16: Classic Problems with Graphs
	Slide 17: Representing a Graph
	Slide 18: Removing the Grid
	Slide 19: Recall the CNN
	Slide 20: Recall the CNN
	Slide 21: Recall the CNN
	Slide 22: Recall the CNN
	Slide 23: Recall the CNN
	Slide 24: Recall the CNN
	Slide 25: Now, let’s throw away the grid structure
	Slide 26: Now, let’s throw away the grid structure
	Slide 27: One final tweak!
	Slide 28: This is a GNN!
	Slide 29: GNN Architectures
	Slide 30: Message passing
	Slide 31: Aggregation & Permutation Invariance
	Slide 32: Aggregation & Permutation Invariance
	Slide 33: Node update
	Slide 34: Let’s put it all together…
	Slide 35: Let’s put it all together…
	Slide 36: Let’s put it all together…
	Slide 37: Let’s put it all together… with an example!
	Slide 38: Let’s put it all together… with an example!
	Slide 39: Let’s put it all together… with an example!
	Slide 40: Let’s put it all together… with an example!
	Slide 41: Let’s put it all together… with an example!
	Slide 42: Let’s put it all together… with an example!
	Slide 43: GNN tasks vs. architectures
	Slide 44: The Transformer as a GNN
	Slide 45: Let’s build a very specific graph convolution…
	Slide 46: Let’s build a very specific graph convolution…
	Slide 47: Let’s build a very specific graph convolution…
	Slide 48: Let’s build a very specific graph convolution…
	Slide 49: Let’s build a very specific graph convolution…
	Slide 50: The Landscape of Geometric Deep Learning
	Slide 51: Case Studies
	Slide 52: Google Maps
	Slide 53: Edge Classification for Particle Tracking
	Slide 54: Edge Classification for Particle Tracking
	Slide 55: Edge Classification for Particle Tracking
	Slide 56: Ice Cube neutrino prediction
	Slide 57: Ice Cube neutrino prediction
	Slide 58: Ice Cube neutrino prediction

