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Introduction & Goals
• Goals for today:

• Understand point cloud structure

• Understand graph structure

• Look at some real data that is represented as a graph

• Understand how to generalize from grid (image)
to a graph

• Think about some choices of GNN architectures

• Zoom in to the Transformer as a kind of GNN

• Have borrowed content from Troels’ slides
from last year!
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How can we represent data
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Data types
• Let’s tidy up our language: There are data types, and data structures

• A data type is an input to our neural network, it falls into one of the 
following types
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Data structures
• Let’s tidy up our language: There are data types, and data structures

• A data type is an input to our neural network, it falls into one of the 
following types

• A data structure defines how each component of our dataset is related

• There are many data structures…
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Data structures
• Tabular: Each sample has one entry

68/05/2024

Student 1 Student 2
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Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of 
entries
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Class 1 Class 2
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Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of 
entries

• Point Cloud: Each sample has a variable 
number of entries, with some notion of 
distance

88/05/2024

Class 1

Student 1 home address

Student 2 home address
Student 3 home address

1→2 distance 1→3 distance
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Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of entries

• Point Cloud: Each sample has a variable number of entries, 
with some notion of distance

• Grid: Each sample has a fixed number of 
entries, binned into a grid, with a natural 
distance
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Image 1

Pixel 1 Pixel 2

Pixel 3 Pixel 4

Neighboring
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Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of entries

• Point Cloud: Each sample has a variable number of entries, 
with some notion of distance

• Grid: Each sample has a fixed number of entries, binned into a 
grid, with a natural distance

• Sequence: Each sample has an ordered list of 
variable number of entries
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Class 1

Tallest student

Is taller 
than

Is taller 
than

…

Shortest student

Is taller 
than
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Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of entries

• Point Cloud: Each sample has a variable number of entries, 
with some notion of distance

• Grid: Each sample has a fixed number of entries, binned into a 
grid, with a natural distance

• Sequence: Each sample has an ordered list of variable number 
of entries

• Time series: Each sample has an ordered list 
of variable number of entries, with a 
neighbor distance given by time
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Day 1

Wake up

5 minutes
later

7 minutes
later

…

Cycle home

8 hours
later

Brush teeth
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Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of entries

• Point Cloud: Each sample has a variable number of entries, with 
some notion of distance

• Grid: Each sample has a fixed number of entries, binned into a 
grid, with a natural distance

• Sequence: Each sample has an ordered list of variable number of 
entries

• Time series: Each sample has an ordered list of variable 
number of entries, with a neighbor distance given by time

• Graph: Each sample has a variable number of 
entries, with neighborhoods given by explicit 
pairwise relationships
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Class 1

Student 1

Is friends 
with

Is mortal 
enemies with

Student 3Is friends 
with
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Data structures
• Graph: Each sample has a variable number of 

entries, with neighborhoods given by explicit 
pairwise relationships

• A graph is a collection of nodes (objects or 
entries) and edges (relationships between each 
object)

• Nodes can have features, edges can have 
features

• A graph may also have graph-level or “global” 
properties, e.g. class_1[“topic”] = 
“applied ML”
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Class 1 = Applied ML

Student 1

Is friends 
with

Is mortal 
enemies with

Student 3Is friends 
with
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Data structures
• I encourage you to look at all data structures 

through the eyes of a graph
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Class 1 = Applied ML

Student 1

Is friends 
with

Is mortal 
enemies with

Student 3Is friends 
with

Student 2 Student 4

Day 1

Wake up

5 minutes
later

7 minutes
later

…

8 hours
later

Brush teeth

Class 1

Tallest student

Is taller 
than

Is taller 
than

…

Shortest student

Is taller 
than

Image 1

Pixel 1 Pixel 2

Pixel 3 Pixel 4

Neighboring

Class 1

Student 1 home address

Student 2 home address
Student 3 home address

1→2 distance 1→3 distance

Class 1

[Age, height]

[Age, height][Age, height]
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Graph Data
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Classic Problems with Graphs
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Travelling Salesman 
Problem

Knowledge Graph 
Comprehension

Image 
Comprehension

Molecular 
Chemistry

Protein
Comprehension



Age: 75
Height: 190cm
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Representing a Graph
• Nodes – a list of node vectors 𝑛𝑖

𝑘 , where 𝑖 = 0, … , 𝑁𝑛 up to number of 
nodes, 𝑘 = 0, … , 𝑁𝑓 up to number of features

• Edges – an adjacency matrix 𝐴𝑖𝑗 , where 𝐴𝑖𝑗 = 1 when there is an edge 
between node 𝑖 and node 𝑗, and 0 otherwise

• In practice, 𝐴𝑖𝑗 is mostly 0s, so let’s represent it with a more efficient 
structure: 𝐸𝑖𝑗 , which is a list of pairs of node indices

3

2

0

1

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐴𝑖𝑗 =

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2
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Removing the Grid
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Recall the CNN
• Remember how the image convolution worked:
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Recall the CNN
• Let’s rewrite this big tensor multiplication into smaller pieces…
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Recall the CNN
• Now this looks like each pixel in the window is passed through a 

simple linear layer of a
feedforward NN 
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• Now this looks like each pixel in the window is passed through a 
simple linear layer of a
feedforward NN 

• Once we have passed
each pixel through, we
aggregate (in this case 
sum) the updated pixels
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Recall the CNN
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• Now this looks like each pixel in the window is passed through a 
simple linear layer of a
feedforward NN 

• Once we have passed
each pixel through, we
aggregate (in this case 
sum) the updated pixels

• The “center” of our 2x2
neighborhood is updated
with the convolution 
outputs
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Recall the CNN

238/05/2024

0.4

0.2

0.1

0.9

0.2

0.6

0.1

0.4

0.1

0.7

0.9

0.1



Graph Neural Networks – Daniel Murnane

• The “center” of our 2x2
neighborhood is updated
with the convolution 
outputs

• These centers form the 
inputs for the next convolution,
which again happens in an 𝑘 × 𝑘
grid neighborhood
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0.2
0.6

1.8

Recall the CNN
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• Grids are convenient for images,
but the world is not a grid

• Instead of “pixels”, let’s call each
hidden vector now a “node”

Now, let’s throw away the grid structure
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• Grids are convenient for images,
but the world is not a grid

• Instead of “pixels”, let’s call each
hidden vector now a “node”

• Let’s also make each node the 
center of its own neighborhood

• And let’s do our convolution over
nearby nodes

• E.g. this would be one such neighborhood:

Now, let’s throw away the grid structure
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• Let’s also make each node the 
center of its own neighborhood

• And let’s do our convolution over
nearby nodes

• E.g. this would be one such neighborhood

• In the CNN, each pixel had its own 
dedicated 𝑊. This was easy, because
every neighborhood had a fixed
number of pixels

• Now there are arbitrary number of nodes in each neighborhood, let’s 
be even simpler and use the same 𝑊𝑀𝑁 for every node multiplication

One final tweak!
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This is a GNN!
• It’s a simple one – a graph convolution network

• The ℎ𝑀 × 𝑊𝑀𝑁 step is a “node update”

• Passing these node features to the 
center node is called “message
passing”

• Summing all the features is
called “aggregation”

• Node update, message
passing and aggregation are
the building blocks for basically all graph neural networks
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GNN Architectures
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Message passing
• We can create a language for convolutions that will work for almost 

every other ML model

• It’s called “message passing”, and it has two parts: calculate the 
message between pairs of objects, then aggregate the messages 
coming into each object’s neighborhood

• For a graph, a message is the features that are passed along an edge – 
a learnable function that takes in the two nodes on either side of that 
edge

308/05/2024

0.1
0.1

0.2
0.6

𝒏𝟎
𝟎

0.1
0.1

0.2
0.6

𝒏𝟏
𝟎

𝑓𝑒(𝑛0
𝑘 , 𝑛1

𝑘)

• 𝑓𝑒 is a learnable function (feed-
forward neural network)

• 𝑛𝑖
𝑘 are the 𝑁𝑘 hidden channels 

of the 𝑁𝑖 nodes in the graph
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Aggregation & Permutation Invariance

• We have a message function 𝑚𝑖𝑗 = 𝑓𝑒(𝑛𝑖
𝑘 , 𝑛𝑗

𝑘), so how do we combine 
these messages around each node?

• We could stack them together and pass them 
through a FFNN? E.g. 𝑓( 𝑚01, 𝑚02 )

• Two problems:

1. A FFNN has a fixed size, but we might
have any number of incoming
messages

2. If we switch the order that we receive the messages (which is 
meaningless), the output of the FFNN will be different!
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Aggregation & Permutation Invariance
• What we are looking for is a “permutation invariant” way to combine 

any number of incoming messages

• There are a few ways to do this, but the 
simplest is to take the sum 
(or mean/max/min)

• The choice of aggregation function 
is a hyperparameter (like the 
CNN pooling step)
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Node update
• The final step is to pass this aggregated information through

a node FFNN

• The 𝑓𝑒  is an edge-wise function/network, it is 
the same for every edge

• The 𝑓𝑛 is a node function/network, 
it is the same for every node

• Note that even though the function
is the same across all nodes or 
edges, the outputs of the function
depend on the node or edge features
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Let’s put it all together…

Equations Pictures GNN Blocks Code

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘 , 

where there are edges 
between 𝑖 → 𝑗

1. Calculate
    messages 

message 𝑚01

node 1 

node 0 
Edge block Node block Global block

𝑒

𝑛

𝑓𝑒
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Equations Pictures GNN Blocks Code

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘 , 

where there are edges 
between 𝑖 → 𝑗

1. Calculate
    messages 
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node 1 

node 0 
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Let’s put it all together…

Equations Pictures GNN Blocks Code

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘 , 

where there are edges 
between 𝑖 → 𝑗

1. Calculate
    messages 

message 𝑚01

node 1 

node 0 

2. Aggregate
    messages 

3. Update
    nodes

Edge block Node block Global block

𝑒

𝑛

𝑓𝑒

𝑎𝑖
𝑙 = ෍

𝑗

(𝑚𝑖𝑗
𝑙 )

node 1 

𝑚01 + 𝑚02 + 𝑚03 Edge block Node block Global block

𝑒

𝑛

𝑓𝑒

node 2 node 3 

∑

Updated node 0

Edge block Node block Global block

𝑒

𝑛

𝑓𝑒
∑

𝑓𝑛 𝑛′𝑛′𝑖
𝑘 = 𝑓𝑛(𝑎𝑖

𝑙, 𝑛𝑖
𝑘)



Let’s put it all together… with an example! 
Let’s assume our “learned” message function is just:

𝑓𝑒 𝑛𝑖
𝑘 , 𝑛𝑗

𝑘 = 𝑛𝑖
𝑘 − 𝑛𝑗

𝑘

and our “learned” node update function is just:

𝑓𝑛 𝑎𝑖
𝑘 , 𝑛𝑖

𝑘 =
1

2
(𝑎𝑖

𝑘 + 𝑛𝑖
𝑘)

0

1

2

3

Age: 75
Height: 190cm

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘1. Calculate

    messages 

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚01
𝑙 = 20 − 50, 170 − 160 = [−30, 10]
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GNN tasks vs. architectures
• Just like with the CNN, the choice of GNN convolution is usually 

separate from the final training task

• Any GNN convolution that does message passing, and updates hidden 
node features, allows us to predict:
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The Transformer as a GNN
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Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉
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Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉

• Define a message function on each edge:

𝑚𝑖𝑗 = 𝑓𝑒 𝐾𝑖
𝑘 , 𝑄𝑗

𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ෍

𝑘

𝐾𝑖
𝑘𝑄𝑗

𝑘
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Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉

• Define a message function on each edge:

𝑚𝑖𝑗 = 𝑓𝑒 𝐾𝑖
𝑘 , 𝑄𝑗

𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ෍

𝑘

𝐾𝑖
𝑘𝑄𝑗

𝑘

• Define an aggregation function around each node:

𝑎𝑖
𝑘 = ∑𝑗 𝑚𝑖𝑗𝑉𝑗

𝑘,    this is just a weighted sum  
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Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉

• Define a message function on each edge:

𝑚𝑖𝑗 = 𝑓𝑒 𝐾𝑖
𝑘 , 𝑄𝑗

𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ෍

𝑘

𝐾𝑖
𝑘𝑄𝑗

𝑘

• Define an aggregation function around each node:

𝑎𝑖
𝑘 = ∑𝑗 𝑚𝑖𝑗𝑉𝑗

𝑘,    this is just a weighted sum

• The node update is just FFNNs to get the next 𝐾′, 𝑄′, 𝑉′
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Let’s build a very specific graph convolution…
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The Landscape of Geometric Deep 
Learning

GNNs

CNNsRNNs

Cellular
Automata

Transformers

Grid 
adjacency

MLP + 1-pixel
Equivalency

https://github.com/murnanedaniel/GNN-as-Transformer-as-GNN/blob/main/0-Transformer_vs_GNN_Annotated.ipynb
https://arxiv.org/pdf/2012.09699.pdf

https://arxiv.org/pdf/1809.02942.pdf 

https://citeseerx.ist.psu.edu/viewdo
c/download?doi=10.1.1.554.4395&r
ep=rep1&type=pdf

Fully-
Connected

Linearly
Connected

= reduces to

Graphical
Automata

https://arxiv.org/pdf/1809.02942.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
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Case Studies
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Google Maps
• DeepMind worked with Google 

Maps developers to apply a 
GNN to estimate travel time

• Improved estimates by up to 
50% in large cities

• Maps are really hard to 
optimize on, as they exhibit 
combinatorial behavior

• GNNs can give fast, 
approximate solutions to map 
problems

528/05/2024
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Edge Classification for Particle Tracking
• In the ATLAS experiment, we need to connect points in the detector to reconstruct particle 

tracks
• It’s a massive connect-the-dots game, with 300,000 dots to connect, every 25 nanoseconds
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Edge Classification for Particle Tracking
Metric 
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Module
Map

or

Graph Neural
Network

Connected
Components

Connected
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+ Walkthrough
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𝑣0
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𝑘 , 𝑣𝑗
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𝑘

𝑒03
𝑘 𝑒04

𝑘

Graph
Construction

Edge
Classification

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

• In the ATLAS experiment, we need to connect points 
in the detector to reconstruct particle tracks

• It’s a massive connect-the-dots game, with 300,000 
dots to connect, every 25 nanoseconds

• We are building graph neural networks to do this 
faster than traditional algorithms
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• In the ATLAS experiment, we need to connect points 
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• We are building graph neural networks to do this 
faster than traditional algorithms
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projects available!
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Ice Cube neutrino prediction
• Neutrino observatory 

inside the ice of 
Antarctica

• Goal is to detect 
neutrinos and 
measure precisely the 
direction they came 
from, their energy, 
what type of neutrino 
they are, etc.
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Ice Cube neutrino prediction
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Ice Cube neutrino prediction

Masters/PhD 
projects available!
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