
Graph Neural Networks – Daniel Murnane

Graph Neural Networks
Applied Machine Learning, KU

Daniel Murnane - May 8th, 2024

18/05/2024

Graph Neural Networks – Daniel Murnane

Introduction & Goals
• Goals for today:

• Understand point cloud structure

• Understand graph structure

• Look at some real data that is represented as a graph

• Understand how to generalize from grid (image)
to a graph

• Think about some choices of GNN architectures

• Zoom in to the Transformer as a kind of GNN

• Have borrowed content from Troels’ slides
from last year!

28/05/2024

Graph Neural Networks – Daniel Murnane

How can we represent data

38/05/2024

Graph Neural Networks – Daniel Murnane

Data types
• Let’s tidy up our language: There are data types, and data structures

• A data type is an input to our neural network, it falls into one of the
following types

48/05/2024

Graph Neural Networks – Daniel Murnane

Data structures
• Let’s tidy up our language: There are data types, and data structures

• A data type is an input to our neural network, it falls into one of the
following types

• A data structure defines how each component of our dataset is related

• There are many data structures…

58/05/2024

Graph Neural Networks – Daniel Murnane

Data structures
• Tabular: Each sample has one entry

68/05/2024

Student 1 Student 2

[Age, height] [Age, height]

Graph Neural Networks – Daniel Murnane

Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of
entries

78/05/2024

Class 1 Class 2

[Age, height]

[Age, height][Age, height]

Graph Neural Networks – Daniel Murnane

Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of
entries

• Point Cloud: Each sample has a variable
number of entries, with some notion of
distance

88/05/2024

Class 1

Student 1 home address

Student 2 home address
Student 3 home address

1→2 distance 1→3 distance

Graph Neural Networks – Daniel Murnane

Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of entries

• Point Cloud: Each sample has a variable number of entries,
with some notion of distance

• Grid: Each sample has a fixed number of
entries, binned into a grid, with a natural
distance

98/05/2024

Image 1

Pixel 1 Pixel 2

Pixel 3 Pixel 4

Neighboring

Graph Neural Networks – Daniel Murnane

Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of entries

• Point Cloud: Each sample has a variable number of entries,
with some notion of distance

• Grid: Each sample has a fixed number of entries, binned into a
grid, with a natural distance

• Sequence: Each sample has an ordered list of
variable number of entries

108/05/2024

Class 1

Tallest student

Is taller
than

Is taller
than

…

Shortest student

Is taller
than

Graph Neural Networks – Daniel Murnane

Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of entries

• Point Cloud: Each sample has a variable number of entries,
with some notion of distance

• Grid: Each sample has a fixed number of entries, binned into a
grid, with a natural distance

• Sequence: Each sample has an ordered list of variable number
of entries

• Time series: Each sample has an ordered list
of variable number of entries, with a
neighbor distance given by time

118/05/2024

Day 1

Wake up

5 minutes
later

7 minutes
later

…

Cycle home

8 hours
later

Brush teeth

Graph Neural Networks – Daniel Murnane

Data structures
• Tabular: Each sample has one entry

• Set: Each sample has a variable number of entries

• Point Cloud: Each sample has a variable number of entries, with
some notion of distance

• Grid: Each sample has a fixed number of entries, binned into a
grid, with a natural distance

• Sequence: Each sample has an ordered list of variable number of
entries

• Time series: Each sample has an ordered list of variable
number of entries, with a neighbor distance given by time

• Graph: Each sample has a variable number of
entries, with neighborhoods given by explicit
pairwise relationships

128/05/2024

Class 1

Student 1

Is friends
with

Is mortal
enemies with

Student 3Is friends
with

Student 2 Student 4

Graph Neural Networks – Daniel Murnane

Data structures
• Graph: Each sample has a variable number of

entries, with neighborhoods given by explicit
pairwise relationships

• A graph is a collection of nodes (objects or
entries) and edges (relationships between each
object)

• Nodes can have features, edges can have
features

• A graph may also have graph-level or “global”
properties, e.g. class_1[“topic”] =
“applied ML”

138/05/2024

Class 1 = Applied ML

Student 1

Is friends
with

Is mortal
enemies with

Student 3Is friends
with

Student 2 Student 4

Graph Neural Networks – Daniel Murnane

Data structures
• I encourage you to look at all data structures

through the eyes of a graph

148/05/2024

Class 1 = Applied ML

Student 1

Is friends
with

Is mortal
enemies with

Student 3Is friends
with

Student 2 Student 4

Day 1

Wake up

5 minutes
later

7 minutes
later

…

8 hours
later

Brush teeth

Class 1

Tallest student

Is taller
than

Is taller
than

…

Shortest student

Is taller
than

Image 1

Pixel 1 Pixel 2

Pixel 3 Pixel 4

Neighboring

Class 1

Student 1 home address

Student 2 home address
Student 3 home address

1→2 distance 1→3 distance

Class 1

[Age, height]

[Age, height][Age, height]

Graph Neural Networks – Daniel Murnane

Graph Data

158/05/2024

Graph Neural Networks – Daniel Murnane

Classic Problems with Graphs

168/05/2024

Travelling Salesman
Problem

Knowledge Graph
Comprehension

Image
Comprehension

Molecular
Chemistry

Protein
Comprehension

Age: 75
Height: 190cm

8/05/2024 17

Representing a Graph
• Nodes – a list of node vectors 𝑛𝑖

𝑘 , where 𝑖 = 0, … , 𝑁𝑛 up to number of
nodes, 𝑘 = 0, … , 𝑁𝑓 up to number of features

• Edges – an adjacency matrix 𝐴𝑖𝑗 , where 𝐴𝑖𝑗 = 1 when there is an edge
between node 𝑖 and node 𝑗, and 0 otherwise

• In practice, 𝐴𝑖𝑗 is mostly 0s, so let’s represent it with a more efficient
structure: 𝐸𝑖𝑗 , which is a list of pairs of node indices

3

2

0

1

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐴𝑖𝑗 =

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

Graph Neural Networks – Daniel Murnane

Removing the Grid

188/05/2024

Graph Neural Networks – Daniel Murnane

Recall the CNN
• Remember how the image convolution worked:

198/05/2024

2 x 2
Kernel

𝑊

Im
ag

e
H

Image W

×

= 𝑅

𝐺

𝐵

×
𝑾𝒊𝒋

𝟎

𝑖 = 1,2,3
𝑗 = 1, … , 𝑁ℎ𝑖𝑑𝑑𝑒𝑛

෍

𝑥,𝑦

()

0.4

0.2

0.1

0.9
0.2

0.6

0.1

0.4
0.1

0.9

0.1

0.1

×××
𝑾𝒊𝒋

𝟏

𝑾𝒊𝒋
𝟐 𝑾𝒊𝒋

𝟑

Graph Neural Networks – Daniel Murnane

Recall the CNN
• Let’s rewrite this big tensor multiplication into smaller pieces…

208/05/2024

2 x 2
Kernel

𝑊

Im
ag

e
H

Image W

×

= 𝑅

𝐺

𝐵

×
𝑾𝒊𝒋

𝟎

𝑖 = 1,2,3
𝑗 = 1, … , 𝑁ℎ𝑖𝑑𝑑𝑒𝑛

෍

𝑥,𝑦

()

0.4

0.2

0.1

0.9
0.2

0.6

0.1

0.4
0.1

0.9

0.1

0.1

×××
𝑾𝒊𝒋

𝟏

𝑾𝒊𝒋
𝟐 𝑾𝒊𝒋

𝟑

Graph Neural Networks – Daniel Murnane

Recall the CNN
• Now this looks like each pixel in the window is passed through a

simple linear layer of a
feedforward NN

218/05/2024

0.4

0.2

0.1

0.9

0.2

0.6

0.1

0.4

0.1

0.9

0.1

0.1

××

×× 𝑾𝒊𝒋
𝟎 𝑾𝒊𝒋

𝟏

𝑾𝒊𝒋
𝟐

𝑾𝒊𝒋
𝟑

Graph Neural Networks – Daniel Murnane

• Now this looks like each pixel in the window is passed through a
simple linear layer of a
feedforward NN

• Once we have passed
each pixel through, we
aggregate (in this case
sum) the updated pixels

0.1
0.1

0.1
0.1

0.1
0.1

0.4
0.4

Recall the CNN

228/05/2024

0.4

0.2

0.1

0.9

0.2

0.6

0.1

0.4

0.1

0.7

0.9

0.1

Graph Neural Networks – Daniel Murnane

• Now this looks like each pixel in the window is passed through a
simple linear layer of a
feedforward NN

• Once we have passed
each pixel through, we
aggregate (in this case
sum) the updated pixels

• The “center” of our 2x2
neighborhood is updated
with the convolution
outputs

0.1
0.1

0.2
0.6

1.8

0.1
0.1

0.1
0.1

0.1
0.1

0.4
0.4

Recall the CNN

238/05/2024

0.4

0.2

0.1

0.9

0.2

0.6

0.1

0.4

0.1

0.7

0.9

0.1

Graph Neural Networks – Daniel Murnane

• The “center” of our 2x2
neighborhood is updated
with the convolution
outputs

• These centers form the
inputs for the next convolution,
which again happens in an 𝑘 × 𝑘
grid neighborhood

0.1
0.1

0.2
0.6

1.8

Recall the CNN

248/05/2024

0.1
0.1

0.2
0.6

0.8

0.1
0.1

0.2
0.6

0.5

0.1
0.1

0.2
0.6

2.4

0.1
0.1

0.2
0.6

1.2

0.1
0.1

0.2
0.6

1.9

0.1
0.1

0.2
0.6

2.2

0.1
0.1

0.2
0.6

0.2

0.1
0.1

0.2
0.6

1.3

Graph Neural Networks – Daniel Murnane

• Grids are convenient for images,
but the world is not a grid

• Instead of “pixels”, let’s call each
hidden vector now a “node”

Now, let’s throw away the grid structure

258/05/2024

0.1
0.1

0.2
0.6

0.8

0.1
0.1

0.2
0.6

0.5

0.1
0.1

0.2
0.6

2.4

0.1
0.1

0.2
0.6

1.2 0.1
0.1

0.2
0.6

1.9

0.1
0.1

0.2
0.6

2.2

0.1
0.1

0.2
0.6

0.2 0.1
0.1

0.2
0.6

1.3

Graph Neural Networks – Daniel Murnane

• Grids are convenient for images,
but the world is not a grid

• Instead of “pixels”, let’s call each
hidden vector now a “node”

• Let’s also make each node the
center of its own neighborhood

• And let’s do our convolution over
nearby nodes

• E.g. this would be one such neighborhood:

Now, let’s throw away the grid structure

268/05/2024

0.1
0.1

0.2
0.6

1.9

0.1
0.1

0.2
0.6

2.2

0.1
0.1

0.2
0.6

0.2 0.1
0.1

0.2
0.6

1.3

Graph Neural Networks – Daniel Murnane

• Let’s also make each node the
center of its own neighborhood

• And let’s do our convolution over
nearby nodes

• E.g. this would be one such neighborhood

• In the CNN, each pixel had its own
dedicated 𝑊. This was easy, because
every neighborhood had a fixed
number of pixels

• Now there are arbitrary number of nodes in each neighborhood, let’s
be even simpler and use the same 𝑊𝑀𝑁 for every node multiplication

One final tweak!

278/05/2024

0.1
0.1

0.2
0.6

1.9

0.1
0.1

0.2
0.6

2.2

0.1
0.1

0.2
0.6

0.2 0.1
0.1

0.2
0.6

1.3

× 𝑊𝑀𝑁

× 𝑊𝑀𝑁

× 𝑊𝑀𝑁

× 𝑊𝑀𝑁

Graph Neural Networks – Daniel Murnane

This is a GNN!
• It’s a simple one – a graph convolution network

• The ℎ𝑀 × 𝑊𝑀𝑁 step is a “node update”

• Passing these node features to the
center node is called “message
passing”

• Summing all the features is
called “aggregation”

• Node update, message
passing and aggregation are
the building blocks for basically all graph neural networks

288/05/2024

0.1
0.1

0.2
0.6

1.9

0.1
0.1

0.2
0.6

2.2

0.1
0.1

0.2
0.6

0.2 0.1
0.1

0.2
0.6

1.3

× 𝑊𝑀𝑁

× 𝑊𝑀𝑁

× 𝑊𝑀𝑁

× 𝑊𝑀𝑁

Graph Neural Networks – Daniel Murnane

GNN Architectures

298/05/2024

Graph Neural Networks – Daniel Murnane

Message passing
• We can create a language for convolutions that will work for almost

every other ML model

• It’s called “message passing”, and it has two parts: calculate the
message between pairs of objects, then aggregate the messages
coming into each object’s neighborhood

• For a graph, a message is the features that are passed along an edge –
a learnable function that takes in the two nodes on either side of that
edge

308/05/2024

0.1
0.1

0.2
0.6

𝒏𝟎
𝟎

0.1
0.1

0.2
0.6

𝒏𝟏
𝟎

𝑓𝑒(𝑛0
𝑘 , 𝑛1

𝑘)

• 𝑓𝑒 is a learnable function (feed-
forward neural network)

• 𝑛𝑖
𝑘 are the 𝑁𝑘 hidden channels

of the 𝑁𝑖 nodes in the graph

Graph Neural Networks – Daniel Murnane

Aggregation & Permutation Invariance

• We have a message function 𝑚𝑖𝑗 = 𝑓𝑒(𝑛𝑖
𝑘 , 𝑛𝑗

𝑘), so how do we combine
these messages around each node?

• We could stack them together and pass them
through a FFNN? E.g. 𝑓(𝑚01, 𝑚02)

• Two problems:

1. A FFNN has a fixed size, but we might
have any number of incoming
messages

2. If we switch the order that we receive the messages (which is
meaningless), the output of the FFNN will be different!

318/05/2024

0.1
0.1

0.2
0.6

𝒏𝟎
𝟎

0.1
0.1

0.2
0.6

𝒏𝟏
𝟎

𝑓𝑒(𝑛0
𝑘 , 𝑛1

𝑘)

0.1
0.1

0.2
0.6

𝒏𝟐
𝟎

𝑓𝑒(𝑛0
𝑘 , 𝑛2

𝑘)

Graph Neural Networks – Daniel Murnane

Aggregation & Permutation Invariance
• What we are looking for is a “permutation invariant” way to combine

any number of incoming messages

• There are a few ways to do this, but the
simplest is to take the sum
(or mean/max/min)

• The choice of aggregation function
is a hyperparameter (like the
CNN pooling step)

328/05/2024

0.1
0.1

0.2
0.6

𝒏𝟎
𝟎

0.1
0.1

0.2
0.6

𝒏𝟏
𝟎

𝑓𝑒(𝑛0
𝑘 , 𝑛1

𝑘)

0.1
0.1

0.2
0.6

𝒏𝟐
𝟎

𝑓𝑒(𝑛0
𝑘 , 𝑛2

𝑘)

𝑓𝑒 𝑛0
𝑘 , 𝑛1

𝑘

+ 𝑓𝑒 𝑛0
𝑘 , 𝑛2

𝑘

Graph Neural Networks – Daniel Murnane

Node update
• The final step is to pass this aggregated information through

a node FFNN

• The 𝑓𝑒 is an edge-wise function/network, it is
the same for every edge

• The 𝑓𝑛 is a node function/network,
it is the same for every node

• Note that even though the function
is the same across all nodes or
edges, the outputs of the function
depend on the node or edge features

338/05/2024

0.1
0.1

0.2
0.6

𝒏𝟎
𝟎

0.1
0.1

0.2
0.6

𝒏𝟏
𝟎

𝑓𝑒(𝑛0
𝑘 , 𝑛1

𝑘)

0.1
0.1

0.2
0.6

𝒏𝟐
𝟎

𝑓𝑒(𝑛0
𝑘 , 𝑛2

𝑘)

𝑛0
′ 𝑘

= 𝑓𝑛(𝑓𝑒 𝑛0
𝑘 , 𝑛1

𝑘 + 𝑓𝑒 𝑛0
𝑘 , 𝑛2

𝑘)

Let’s put it all together…

Equations Pictures GNN Blocks Code

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘 ,

where there are edges
between 𝑖 → 𝑗

1. Calculate
 messages

message 𝑚01

node 1

node 0
Edge block Node block Global block

𝑒

𝑛

𝑓𝑒

Let’s put it all together…

Equations Pictures GNN Blocks Code

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘 ,

where there are edges
between 𝑖 → 𝑗

1. Calculate
 messages

message 𝑚01

node 1

node 0

2. Aggregate
 messages

Edge block Node block Global block

𝑒

𝑛

𝑓𝑒

𝑎𝑖
𝑙 = ෍

𝑗

(𝑚𝑖𝑗
𝑙)

node 1

𝑚01 + 𝑚02 + 𝑚03 Edge block Node block Global block

𝑒

𝑛

𝑓𝑒

node 2 node 3

∑

8/05/2024 36

Let’s put it all together…

Equations Pictures GNN Blocks Code

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘 ,

where there are edges
between 𝑖 → 𝑗

1. Calculate
 messages

message 𝑚01

node 1

node 0

2. Aggregate
 messages

3. Update
 nodes

Edge block Node block Global block

𝑒

𝑛

𝑓𝑒

𝑎𝑖
𝑙 = ෍

𝑗

(𝑚𝑖𝑗
𝑙)

node 1

𝑚01 + 𝑚02 + 𝑚03 Edge block Node block Global block

𝑒

𝑛

𝑓𝑒

node 2 node 3

∑

Updated node 0

Edge block Node block Global block

𝑒

𝑛

𝑓𝑒
∑

𝑓𝑛 𝑛′𝑛′𝑖
𝑘 = 𝑓𝑛(𝑎𝑖

𝑙, 𝑛𝑖
𝑘)

Let’s put it all together… with an example!
Let’s assume our “learned” message function is just:

𝑓𝑒 𝑛𝑖
𝑘 , 𝑛𝑗

𝑘 = 𝑛𝑖
𝑘 − 𝑛𝑗

𝑘

and our “learned” node update function is just:

𝑓𝑛 𝑎𝑖
𝑘 , 𝑛𝑖

𝑘 =
1

2
(𝑎𝑖

𝑘 + 𝑛𝑖
𝑘)

0

1

2

3

Age: 75
Height: 190cm

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘1. Calculate

 messages

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚01
𝑙 = 20 − 50, 170 − 160 = [−30, 10]

Let’s put it all together… with an example!
Let’s assume our “learned” message function is just:

𝑓𝑒 𝑛𝑖
𝑘 , 𝑛𝑗

𝑘 = 𝑛𝑖
𝑘 − 𝑛𝑗

𝑘

and our “learned” node update function is just:

𝑓𝑛 𝑎𝑖
𝑘 , 𝑛𝑖

𝑘 =
1

2
(𝑎𝑖

𝑘 + 𝑛𝑖
𝑘)

0

1

2

3

Age: 75
Height: 190cm

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘1. Calculate

 messages

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = [

−30
10

,
−15
20

,
−55
−20

,
−40
−40

,
30

−10
,

15
20

,
55
20

,
40
40

]

Let’s put it all together… with an example!
Let’s assume our “learned” message function is just:

𝑓𝑒 𝑛𝑖
𝑘 , 𝑛𝑗

𝑘 = 𝑛𝑖
𝑘 − 𝑛𝑗

𝑘

and our “learned” node update function is just:

𝑓𝑛 𝑎𝑖
𝑘 , 𝑛𝑖

𝑘 =
1

2
(𝑎𝑖

𝑘 + 𝑛𝑖
𝑘)

0

1

2

3

Age: 75
Height: 190cm

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘1. Calculate

 messages

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = [

−30
10

,
−15
20

,
−55
−20

,
−40
−40

,
30

−10
,

15
20

,
55
20

,
40
40

]

2. Aggregate
 messages 𝑎𝑖

𝑙 = ෍

𝑗

(𝑚𝑖𝑗
𝑙)

𝑎0
𝑙 = 𝑚01

𝑙 + 𝑚02
𝑙 + 𝑚03

𝑙

 =
−30
10

+
−15
20

+
−55
−20

 =
−100

10

Let’s put it all together… with an example!
Let’s assume our “learned” message function is just:

𝑓𝑒 𝑛𝑖
𝑘 , 𝑛𝑗

𝑘 = 𝑛𝑖
𝑘 − 𝑛𝑗

𝑘

and our “learned” node update function is just:

𝑓𝑛 𝑎𝑖
𝑘 , 𝑛𝑖

𝑘 =
1

2
(𝑎𝑖

𝑘 + 𝑛𝑖
𝑘)

0

1

2

3

Age: 75
Height: 190cm

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘1. Calculate

 messages

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = [

−30
10

,
−15
20

,
−55
−20

,
−40
−40

,
30

−10
,

15
20

,
55
20

,
40
40

]

2. Aggregate
 messages 𝑎𝑖

𝑙 = ෍

𝑗

(𝑚𝑖𝑗
𝑙)

𝑎𝑖
𝑙 = [

−100
10

,
30

−10
,

−25
−20

,
95
60

]

Let’s put it all together… with an example!
Let’s assume our “learned” message function is just:

𝑓𝑒 𝑛𝑖
𝑘 , 𝑛𝑗

𝑘 = 𝑛𝑖
𝑘 − 𝑛𝑗

𝑘

and our “learned” node update function is just:

𝑓𝑛 𝑎𝑖
𝑘 , 𝑛𝑖

𝑘 =
1

2
(𝑎𝑖

𝑘 + 𝑛𝑖
𝑘)

0

1

2

3

Age: 75
Height: 190cm

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘1. Calculate

 messages

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = [

−30
10

,
−15
20

,
−55
−20

,
−40
−40

,
30

−10
,

15
20

,
55
20

,
40
40

]

2. Aggregate
 messages 𝑎𝑖

𝑙 = ෍

𝑗

(𝑚𝑖𝑗
𝑙)

𝑎𝑖
𝑙 = [

−100
10

,
30

−10
,

−25
−20

,
95
60

]

3. Update
 nodes

𝑛′𝑖
𝑘 = 𝑓𝑛(𝑎𝑖

𝑙, 𝑛𝑖
𝑘)

𝑛′0
𝑘 = 𝑓𝑛 𝑎0

𝑙 , 𝑛0
𝑘 =

1

2
−100

10
+

20
170

=
−40
90

Let’s put it all together… with an example!
Let’s assume our “learned” message function is just:

𝑓𝑒 𝑛𝑖
𝑘 , 𝑛𝑗

𝑘 = 𝑛𝑖
𝑘 − 𝑛𝑗

𝑘

and our “learned” node update function is just:

𝑓𝑛 𝑎𝑖
𝑘 , 𝑛𝑖

𝑘 =
1

2
(𝑎𝑖

𝑘 + 𝑛𝑖
𝑘)

0

1

2

3

Age: 75
Height: 190cm

Age: 20
Height: 170cm

Age: 50
Height: 160cm

Age: 35
Height: 150cm

𝑛𝑖
𝑘 =

20 170
50 160
35 150
75 190

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = 𝑓𝑒 𝑛𝑖

𝑘 , 𝑛𝑗
𝑘1. Calculate

 messages

𝐸𝑖𝑗 =
0 0 0 2 1 2 3 3
1 2 3 3 0 0 0 2

𝑚𝑖𝑗
𝑙 = [

−30
10

,
−15
20

,
−55
−20

,
−40
−40

,
30

−10
,

15
20

,
55
20

,
40
40

]

2. Aggregate
 messages 𝑎𝑖

𝑙 = ෍

𝑗

(𝑚𝑖𝑗
𝑙)

𝑎𝑖
𝑙 = [

−100
10

,
30

−10
,

−25
−20

,
95
60

]

3. Update
 nodes

𝑛′𝑖
𝑘 = 𝑓𝑛(𝑎𝑖

𝑙, 𝑛𝑖
𝑘)

𝑛′𝑖
𝑘 =

−40 90
40 75
5 65

85 125

Graph Neural Networks – Daniel Murnane

GNN tasks vs. architectures
• Just like with the CNN, the choice of GNN convolution is usually

separate from the final training task

• Any GNN convolution that does message passing, and updates hidden
node features, allows us to predict:

438/05/2024

0

1

2

3

Age: ?
Height: ?

Node features

0

1

2

3

Friendship status?

Edge features

0

1

2

3 Class topic?

Global features

Graph Neural Networks – Daniel Murnane

The Transformer as a GNN

448/05/2024

Graph Neural Networks – Daniel Murnane

Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉

458/05/2024

0

1

2

3

𝐾2, 𝑄2, 𝑉2

𝐾1, 𝑄1, 𝑉1

𝐾3, 𝑄3, 𝑉3

𝐾0, 𝑄0, 𝑉0

Graph Neural Networks – Daniel Murnane

Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉

• Define a message function on each edge:

𝑚𝑖𝑗 = 𝑓𝑒 𝐾𝑖
𝑘 , 𝑄𝑗

𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ෍

𝑘

𝐾𝑖
𝑘𝑄𝑗

𝑘

468/05/2024

0

1

2

3

𝐾2, 𝑄2, 𝑉2

𝐾1, 𝑄1, 𝑉1

𝐾3, 𝑄3, 𝑉3

𝐾0, 𝑄0, 𝑉0

𝑚23

𝑚03

𝑚03 𝑚01

Graph Neural Networks – Daniel Murnane

Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉

• Define a message function on each edge:

𝑚𝑖𝑗 = 𝑓𝑒 𝐾𝑖
𝑘 , 𝑄𝑗

𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ෍

𝑘

𝐾𝑖
𝑘𝑄𝑗

𝑘

• Define an aggregation function around each node:

𝑎𝑖
𝑘 = ∑𝑗 𝑚𝑖𝑗𝑉𝑗

𝑘, this is just a weighted sum

478/05/2024

0

1

2

3

𝑉0𝑚01+𝑉0𝑚02 + 𝑉0𝑚03

Graph Neural Networks – Daniel Murnane

Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉

• Define a message function on each edge:

𝑚𝑖𝑗 = 𝑓𝑒 𝐾𝑖
𝑘 , 𝑄𝑗

𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ෍

𝑘

𝐾𝑖
𝑘𝑄𝑗

𝑘

• Define an aggregation function around each node:

𝑎𝑖
𝑘 = ∑𝑗 𝑚𝑖𝑗𝑉𝑗

𝑘, this is just a weighted sum

• The node update is just FFNNs to get the next 𝐾′, 𝑄′, 𝑉′

488/05/2024

0

1

2

3

𝑓𝑛
𝐾 𝑎𝑖 , 𝑓𝑛

𝑄
𝑎𝑖 , 𝑓𝑛

𝑉(𝑎𝑖)

Graph Neural Networks – Daniel Murnane

Let’s build a very specific graph convolution…

• For each node, attach three sets of hidden features: 𝐾, 𝑄, 𝑉

• Define a message function on each edge:

𝑚𝑖𝑗 = 𝑓𝑒 𝐾𝑖
𝑘 , 𝑄𝑗

𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ෍

𝑘

𝐾𝑖
𝑘𝑄𝑗

𝑘

• Define an aggregation function around each node:

𝑎𝑖
𝑘 = ∑𝑗 𝑚𝑖𝑗𝑉𝑗

𝑘, this is just a weighted sum

• The node update is just FFNNs to get the next 𝐾′, 𝑄′, 𝑉′

498/05/2024

0

1

2

3

𝑓𝑛
𝐾 𝑎𝑖 , 𝑓𝑛

𝑄
𝑎𝑖 , 𝑓𝑛

𝑉(𝑎𝑖)

THIS IS A TRANSFORMER

50

The Landscape of Geometric Deep
Learning

GNNs

CNNsRNNs

Cellular
Automata

Transformers

Grid
adjacency

MLP + 1-pixel
Equivalency

https://github.com/murnanedaniel/GNN-as-Transformer-as-GNN/blob/main/0-Transformer_vs_GNN_Annotated.ipynb
https://arxiv.org/pdf/2012.09699.pdf

https://arxiv.org/pdf/1809.02942.pdf

https://citeseerx.ist.psu.edu/viewdo
c/download?doi=10.1.1.554.4395&r
ep=rep1&type=pdf

Fully-
Connected

Linearly
Connected

= reduces to

Graphical
Automata

https://arxiv.org/pdf/1809.02942.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf

Graph Neural Networks – Daniel Murnane

Case Studies

518/05/2024

Graph Neural Networks – Daniel Murnane

Google Maps
• DeepMind worked with Google

Maps developers to apply a
GNN to estimate travel time

• Improved estimates by up to
50% in large cities

• Maps are really hard to
optimize on, as they exhibit
combinatorial behavior

• GNNs can give fast,
approximate solutions to map
problems

528/05/2024

8/05/2024 53

Edge Classification for Particle Tracking
• In the ATLAS experiment, we need to connect points in the detector to reconstruct particle

tracks
• It’s a massive connect-the-dots game, with 300,000 dots to connect, every 25 nanoseconds

8/05/2024 54

Edge Classification for Particle Tracking
Metric

Learning

Module
Map

or

Graph Neural
Network

Connected
Components

Connected
Components

+ Walkthrough

or
𝑣0

𝑘+1 = 𝜙(𝑒0𝑗
𝑘 , 𝑣𝑗

𝑘 , 𝑣0
𝑘)

𝑣1
𝑘

𝑣2
𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
𝑘 𝑒02

𝑘

𝑒03
𝑘 𝑒04

𝑘

Graph
Construction

Edge
Classification

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

• In the ATLAS experiment, we need to connect points
in the detector to reconstruct particle tracks

• It’s a massive connect-the-dots game, with 300,000
dots to connect, every 25 nanoseconds

• We are building graph neural networks to do this
faster than traditional algorithms

8/05/2024 55

Edge Classification for Particle Tracking
Metric

Learning

Module
Map

or

Graph Neural
Network

Connected
Components

Connected
Components

+ Walkthrough

or
𝑣0

𝑘+1 = 𝜙(𝑒0𝑗
𝑘 , 𝑣𝑗

𝑘 , 𝑣0
𝑘)

𝑣1
𝑘

𝑣2
𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
𝑘 𝑒02

𝑘

𝑒03
𝑘 𝑒04

𝑘

Graph
Construction

Edge
Classification

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

• In the ATLAS experiment, we need to connect points
in the detector to reconstruct particle tracks

• It’s a massive connect-the-dots game, with 300,000
dots to connect, every 25 nanoseconds

• We are building graph neural networks to do this
faster than traditional algorithms

Masters/PhD
projects available!

8/05/2024 56

Ice Cube neutrino prediction
• Neutrino observatory

inside the ice of
Antarctica

• Goal is to detect
neutrinos and
measure precisely the
direction they came
from, their energy,
what type of neutrino
they are, etc.

8/05/2024 57

Ice Cube neutrino prediction

8/05/2024 58

Ice Cube neutrino prediction

Masters/PhD
projects available!

	Slide 1: Graph Neural Networks
	Slide 2: Introduction & Goals
	Slide 3: How can we represent data
	Slide 4: Data types
	Slide 5: Data structures
	Slide 6: Data structures
	Slide 7: Data structures
	Slide 8: Data structures
	Slide 9: Data structures
	Slide 10: Data structures
	Slide 11: Data structures
	Slide 12: Data structures
	Slide 13: Data structures
	Slide 14: Data structures
	Slide 15: Graph Data
	Slide 16: Classic Problems with Graphs
	Slide 17: Representing a Graph
	Slide 18: Removing the Grid
	Slide 19: Recall the CNN
	Slide 20: Recall the CNN
	Slide 21: Recall the CNN
	Slide 22: Recall the CNN
	Slide 23: Recall the CNN
	Slide 24: Recall the CNN
	Slide 25: Now, let’s throw away the grid structure
	Slide 26: Now, let’s throw away the grid structure
	Slide 27: One final tweak!
	Slide 28: This is a GNN!
	Slide 29: GNN Architectures
	Slide 30: Message passing
	Slide 31: Aggregation & Permutation Invariance
	Slide 32: Aggregation & Permutation Invariance
	Slide 33: Node update
	Slide 34: Let’s put it all together…
	Slide 35: Let’s put it all together…
	Slide 36: Let’s put it all together…
	Slide 37: Let’s put it all together… with an example!
	Slide 38: Let’s put it all together… with an example!
	Slide 39: Let’s put it all together… with an example!
	Slide 40: Let’s put it all together… with an example!
	Slide 41: Let’s put it all together… with an example!
	Slide 42: Let’s put it all together… with an example!
	Slide 43: GNN tasks vs. architectures
	Slide 44: The Transformer as a GNN
	Slide 45: Let’s build a very specific graph convolution…
	Slide 46: Let’s build a very specific graph convolution…
	Slide 47: Let’s build a very specific graph convolution…
	Slide 48: Let’s build a very specific graph convolution…
	Slide 49: Let’s build a very specific graph convolution…
	Slide 50: The Landscape of Geometric Deep Learning
	Slide 51: Case Studies
	Slide 52: Google Maps
	Slide 53: Edge Classification for Particle Tracking
	Slide 54: Edge Classification for Particle Tracking
	Slide 55: Edge Classification for Particle Tracking
	Slide 56: Ice Cube neutrino prediction
	Slide 57: Ice Cube neutrino prediction
	Slide 58: Ice Cube neutrino prediction

