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“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



The problem of real data!
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In an ideal world, we would:
Copy data to your area and start training on it!
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In an ideal world, we would:
Copy data to your area and start training on it!

In the real world, we need to:
• Collecting data from detectors, databases, spreadsheets, APIs, etc. ensuring 

that it contains the relevant parts in an understood way.
• Clean the data by removing or correcting missing values, outliers, or 

inconsistencies.
• Transform the data through normalisation and encoding to make it 

compatible with machine learning algorithms.
• Potentially, reduce the data's complexity without losing the information 

through dimensionality reduction.

The following are about these steps.



When data is imperfect
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So far, we have looked at “perfect” data, i.e. data without any flaws in it. 
However, real world datasets are hardly ever “perfect”, but contains flaws that 
makes preprocessing imperative.

Effects may be (non-exhaustive list):
•  NaN-values and "Non-values" (i.e. -9999)
•  Wild outliers (i.e. values far outside the typical range)
•  Shifts in distributions (i.e. part of data having a different mean/width/etc.)
•  Mixture of types (i.e. numerical and text, from something humans filled out)

It is also important to consider, if entries are missing…
1. Randomly (in which case there should be no bias from omitting) or 
2. Following some pattern (in which case there could be problems!). 

In case of NaN values, we might simply decide to drop the variable column or 
entry row, requiring that all variables/entries have reasonable values.

Alternatively, we might insert “imputed” values instead, saving statistics.



Imputations
(dealing with missing values)
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When data is imperfect

6

Imagine that you get the following data, which contains (many) NaN values.
How would you want to treat a dataset like this? Discuss locally and classwide.

Medium Article, “Working with Missing Values in a Dataset” by Okoh Anita

https://heartbeat.comet.ml/data-handling-scenarios-part-2-working-with-missing-values-in-a-dataset-34b758cfc9fa


Removing Variables/Columns
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A “simple” way to get rid of NaN-values is to drop the column(s) containing 
NaN values. This works well, when these are few and with a high NaN-fraction.



Removing Entries/Rows
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Alternatively, one might instead decide to remove rows with many NaNs in 
them, arguing that these are incomplete entries.
This works well, when these seem to be Random NaNs, and when the entries 
with a high NaN-fraction are few.



When data is imperfect
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So, in case of NaN values, we might simply decide to drop the variable column 
or entry row, requiring that all variables/entries have reasonable values.

Alternatively, we might insert “imputed” values instead, saving statistics:



Imputing with the mode
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Instead of removing rows with NaN-values in them, one can decide to rather
“impute” values into these, e.g. using the mode (most frequently occurring).



Imputing with the mean
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Alternatively, one may impute values using the mean (or mode) of that column.
This has the advantage, that variables/events are not thrown away.



Alternatives when imputing
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Instead of using a fixed number for inputing, one might pick an age randomly, 
but at the same time “report” (in a new column) that it is an imputed value.



When data is imperfect
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Alternatively, one might decide to give the NaN-values a specific value (here -1), 
which is different from all other values.



When data is imperfect
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For the text case, one might again simply consider making a new column, which 
indicates if the value given is imputed (no matter what method was used).



Imputations methods
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Statistical imputation:
    Use regression models to predict the missing values based on other features.
    Use probability distributions to impute missing values.

Unsupervised imputation:
    Use mean, median, or mode value of distribution.
    Use k-NN, i.e. average of neighbours in the k most similar rows.
    Use AutoEncoder to learn a compressed representation of the data.

Other imputation methods:
    Arbitrary Value: Replace missing values with arbitrary value, such as -1 or 0.
    Multivariate: Impute missing value based on relationship with other features.

Whichever method you use, be sure to note the number and fraction of 
imputations and be clear about the method in your thesis/publications.

It also serves you well to try different methods to see the impact of (and thus 
systematic uncertainty from) your choice.



NaN-values tend to correlate
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It is often seen, that several variables have the same source, and thus their NaN 
occurrence might be correlated with each other.

This can be tested by substituting 0’s for numerical values and 1’s for NaN 
values. By considering the correlation matrix of these substitute 0/1 values, one 
gets a pretty clear picture.

Typically, some entries are 100%
correlated, as the source of these
variables is shared.

Based on this information, one can
better decide how to deal with these
variables.



How to deal with outliers?
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Sometimes, (a few?) entries take on extreme values, which ruin either the NN 
performance, or the transformation applied first (and then the performance).
How to deal with that?
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Sometimes, (a few?) entries take on extreme values, which ruin either the NN 
performance, or the transformation applied first (and then the performance).
How to deal with that?

Make (very loose) truncations (not like this)…



Mixture of types
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At other times, types may be mixed. An example could be from a form, where 
people are asked “How long time did it last?”. The answers:
• 2 minutes,
• 4.5h,
• about a second,
• 4:07:32,
• donno,
• all day,
• between four and 5 min.

In that case, there is nothing else to do, than to run through the bitter (large) 
number of unique cases, and get more than 95% working, possibly leaving the 
rest.



Inconsistent data
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Sometimes (though more rarely), data is inconsistent. This may happen in 
several ways, some of which are:

1. Several columns in your data, which should contain the same information, 
but doesn’t. This often happens when you have merged (same?) data in 
different formats/versions. 
Example: Columns “Age” and “Days since birth” are not consistant. 
 

2. The data format may have changed during data collection, leaving a change 
of values at some point. 
Example: Column “Date” content is “2005-11-06” and later “09-08-2021”. 

3. Logical inconsistencies, where one value renders other values inconsistent. 
Example: Column “Car Owner” is “No”, but “Own car value” is “10000$”.

There are no single recipes for dealing with these inconsistencies, except 
patience, time, dedication, and acceptance of the imperfect.



Transformations
(dealing with non-unit values)
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Transformations
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Once we have values for all parts of data, we want to normalise it to unity, i.e. 
mean=0 and sigma=1.

But even perfectly good data may naturally have weird distributions that may 
need special attention first.

For this reason, one may want to transform the values by some power, log, etc.



Transformations
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There are several ways to normalise data. In principle we want data to become 
Unit Gaussian, but this is not really needed, as less can do the job:

Quantile: Give values in [0,1] according to rank of values (place when sorted).

Min-Max Scaling:

Standardisation:

Unit Vector:

Box-Cox:
Input values y need to be positive.
The value of λ is chosen to make the distribution
of z most Gaussian. Implemented in SciPy.
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Conclusions
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No matter what you plan to do with data, my first advice is always:

Print & Plot
This is your first assurance, that you even remotely know what the data 
contains, and your first guard against nasty surprises.

Also, working with others (from know-nothings to domain experts) you will be 
required to show the input, and assuring that it is valid and makes sense.

Remember also to do so in your final projects…


