
Inar Timiryasov (NBI) 
inar.timiryasov@nbi.ku.dk

May 14, 2025

Time-series, Transformers, and Natural Language Processing

• Handling Sequential Data: Time Series & Recurrent Architectures

• The Attention Mechanism: A Leap Forward

• Transformers: Architecture & Impact

• Transformers in Natural Language Processing (NLP)

2

Plan

• Time series data are ubiquitous: 
Stock prices; weather patterns; sensor readings;  
flight passenger numbers (today’s exercise);
speech; text

• Why is it special? Order matters, dependencies
between points.

• Usual NN approaches are not well suited for
these types of data:

• Lack of temporal dynamics 
(treating input features independently)

• Fixed input size

• CNNs capture only local dependencies by
design

3

Time series data and limitations of the usual network architectures

• A network with memory (hidden state).

• Analogy: Reading a sentence, understanding depends on previous words. 
Compressed information about previous words is stored in the hidden state.

• We apply the same model to each time step (unfold)!

• We can only process one element at a time — this is a limitation

4

Recurrent Neural Network (RNN)

 - hidden stateht

at = V ht−1 + U xt + b
ht = tanh(at)
ot = W ht + c

• Training RNNs: backpropagation through time.

• Each time step of the unrolled recurrent neural network may be seen as an additional layer.

• Vanishing/Exploding Gradients: Difficulty learning long-range dependencies.

• A fix is a “skip connection” (similar to U-Net and ResNet, but in time, not in depth)

• LSTM, GRU

5

Challenges with Simple RNNs & Evolution

• Skip connection — long term memory — a “highway" in time

• Gates decide what to write to the long term memory

• They are better at capturing longer-term patterns.

6

Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU)

Sources: http://colah.github.io/posts/2015-08-Understanding-LSTMs/  
 https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture06-fancy-rnn.pdf

LSTM

Exercise: Flight Passenger Predictions

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture06-fancy-rnn.pdf

• The same network is used at every time step (hence recurrent).

• Vanilla RNNs are hard to train.  
LSTM/GRU partly solve this problem.

• All information about the past sequence must be compressed into the hidden state. 
Pros: compression is intelligence [see “An Observation on Generalization” by Ilya Sutskever]. 
Intuition: there are exponentially many almost orthogonal vectors in D>>1 dimensions. 
Cons: in practice, only a limited amount of information can be stored in the hidden state. 
RNNs tend to forget the past context after a certain length.

• Hard to train in parallel, since we need to process steps sequentially. 
(but there are ways around, keywords: RWKV, State Space Models, e.g. Mamba.)

7

Recap on RNNs

https://www.youtube.com/live/AKMuA_TVz3A?si=1rFI6PGIh-1TgbSL

• Core Idea: Allow the model to "look back" at
different parts of the input sequence when
processing or generating an output, and weigh
their importance.

• Analogy: Human translators don't just read a
whole sentence and then translate; they focus on
relevant parts.

• Benefit: Mitigates information bottleneck, better
context.

• Self-Attention: Attention within a Single
Sequence

8

Attention!

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio 
Neural Machine Translation by Jointly  
Learning to Align and Translate 
arXiv:1409.0473 
 
RNN with attention

9

How Self-Attention works?

10

How Self-Attention works?

• Input at time step

• We project each input using three different transformations: 
 
 

• Output at step is the sum of over all steps with weights : 
 

• where attention weights

•

xs s

xs
vs = WV xs
ks = WKxs
qs = WQxs

t vs s Ats

yt = ∑
s

Ats vs

Ats = softmax (qt ⋅ ks

d)
yt = ∑

s

softmax ((WQxt) ⋅ (WKxs)T

d)(WV xs)

11

How Self-Attention works?

x1 x2 x3 xT…

KQ V KQ V KQ V KQ V

Attention(Q,K,V) = softmax(Q KT

dK) V

…

…

y1 y2 y3 yT…

yt = ∑
s

softmax ((WQxt) ⋅ (WKxs)T

dK)(WV xs) attention becomes non-trivial with multiple layers 
see [Transformer Circuits Thread]

https://transformer-circuits.pub/2021/framework/index.html

12

Transformer

• Initially proposed by Google for machine translation tasks.

• They utilize the attention mechanism introduced in [1409.0473], but
without an RNN component.

• The original architecture consisted of an encoder and a decoder: 
 
- Encoder: Processes input sequence (e.g., sentence to be translated). 
 Each position attends to all other positions in the input sequence. 
 
- Decoder: Generates output sequence (e.g., the translation), attending
to encoder output. 
 Each position attends to previous positions (including itself) in the
output sequence (causal attention).

• Generative models, such as GPT, are decoder-only.  
In physics, we often need encoder models. 
(Technically, the only difference: decoders feature a causal attention
mask.)

Encoder Decoder

13

Transformer

• Now that diagram is not so scary!

• Stack multiple attention heads.

• Add MLP.

• Add norms (before) Attention and
MLP.

• Repeat n_layer times.

• Positional embeddings to break
permutation invariance. 
(nowadays: RoPE)

K

Attention
H x

Q V

Proj

Norm

MLP In

MLP Out

MLP Out

K

Shaped Attention
H x

Q MLP In

NonLin

MLP Out

NonLin

Norm

K

Attention
H x

Q V

Proj

NonLin

Norm

Pre-LN

Parallel

Ours

MLP In

Figure 1: Comparison between different Transformer blocks. (Left) The standard Pre-LN block. (Top Right)
Our most simplified block. (Bottom Right) The parallel block (Wang & Komatsuzaki, 2021). Like the parallel
block, our block eschews the need for sequential sub-blocks, but we additionally remove all skip connections
and normalisation layers, as well as value and projection parameters. Here, ⌦ denotes a matrix multiplication,
and � denotes a (potentially weighted) sum.

Finally, on the practical side, given the exorbitant cost of training and deploying large transformer
models nowadays, any efficiency gains in the training and inference pipelines for the transformer
architecture represent significant potential savings. Simplifying the transformer block by removing
non-essential components both reduces the parameter count and increases throughput in our models.
In particular, we show that it is possible to remove skip connections, value parameters, projection
parameters and sequential sub-blocks, all while matching the standard transformer in terms of train-
ing speed and downstream task performance. As a result, we reduce parameter count by up to 16%
and observe throughput increases of 16% at both train and inference time.

Our starting point for simplifying Transformer blocks is He et al. (2023), who show that respecting
signal propagation principles allows one to train deep Transformers without skip connections or
normalisation layers, but at significantly reduced convergence speeds per parameter update. We first
show that regulating the updates to values and projection parameters (Sec. 4.1), or in fact removing
them entirely (Sec. 4.2), improves the performance of skipless attention sub-blocks, and recovers the
lost per-update training speed reported by He et al. (2023). This removes half of the parameters and
matrix-multiplications in the attention sub-block. In Sec. 4.3, we show our simplifications combine
profitably with parallel sub-blocks (Wang & Komatsuzaki, 2021), which allows us to remove all
remaining skip connections and sequential sub-blocks without compromising per-update training
speed, whilst further boosting the throughput increase to be 16%, in our implementation. Finally, in
Sec. 5, we show that our simplified blocks improve when scaled to larger depths, work well in both
encoder-only and decoder-only architectures, and that our findings also hold when scaling training
length. We conclude with a discussion of limitations and future work in Sec. 6.

2 RELATED WORK

Simplifying deep NNs by removing block components has received a lot of attention, both in trans-
formers and other architectures. In these works, signal propagation theory often acts as inspiration.

For a pair of inputs x,x0, mapped to a pair of representation/activations vectors xl,x0
l

2
Rd at layer l, signal propagation theory studies the evolution of activation inner products
1
d
x>
l
x0
l
, 1
d
x>
l
xl,

1
d
x0
l

>x0
l

at initialisation, which can be tracked with their large d limits (Lee et al.,
2018; Matthews et al., 2018; Yang, 2019). Several pathologies afflicting poorly designed deep NNs
can be identified as a result (Schoenholz et al., 2017; Hayou et al., 2019; Yang et al., 2019; Dong
et al., 2021; Martens et al., 2021). For example, the activation norms 1

d
x>
l
xl may blow up or vanish,

or the cross products 1
d
x>
l
x0
l

may converge to a value independent of the inputs x,x0 at large l, in
which case deeper layers of the model are unable to identify different inputs. Avoiding such degen-
eracies is important to allow for good training dynamics and generalisation in deep NNs (Balduzzi
et al., 2017; Xiao et al., 2018; 2020; Hayou et al., 2021; Martens et al., 2021; Noci et al., 2022).

2

…h1h0

MLP

transformer block

+

+

…h1h0

MLP

transformer block

+

+

14

Why Transformers are a Breakthrough

• Superior performance on many sequence tasks, especially NLP. Also on vision.

• Handles long-range dependencies effectively.  
Google’s Gemini has context length 1M, see at https://aistudio.google.com

• Parallelization: Faster training on modern hardware. 
Computations for all tokens within a layer can be performed in parallel, unlike
RNN.

• The price to pay is computational and memory complexity with respect to
sequence length . 
Mitigations:  
 - Efficient implementations: FlashAttention  
 - KV Caching for generation.

• Scalability: Foundation for very large models (LLMs).

𝒪(N2)
N

May 2023

May 2025

https://aistudio.google.com

15

Natural Language Processing

My slide from 2023 
Hard to impress in 2025!

• Goal: Enabling computers to understand,
interpret, and generate human language.

• Text Classification (e.g., sentiment analysis)

• Machine Translation

• Text Generation <- today’s focus 
Also known as language modeling,  
autoregressive generation

16

Language modeling: why does it even work?

• Given a sequence of words  
estimate

• N-gram models: estimate  
from a corpus of texts by simple counting

• for a vocabulary of 50 000 words:

• bigrams

• trigrams

• …

• 14-grams

x(1), x(2), …, x(t)

P(x(t+1) |x(1), x(2), …, x(t))

P(x(N) |x(1), x(2), …, x(N−1))

500002 = 2500000000

1.25 × 1014

6.1 × 1065

17

Representing words

• Vocabulary: enumerate all words 
But there are too many words in many languages

• Tokenization: Breaking text into smaller units (words, sub-
words) 
Note! Tokenization causes its own issues  
[very detailed lecture]

https://platform.openai.com/tokenizer

A helpful rule of thumb is that one token generally
corresponds to ~4 characters of text for common English
text. This translates to roughly ¾ of a word (so 100
tokens ~= 75 words).

• Embeddings — every token is a vector in a
multidimensional space 
(Word2Vec)

Operations over vectors:

https://youtu.be/zduSFxRajkE?si=slHkiWJIF5U2H3fN
https://platform.openai.com/tokenizer

18

Language modeling: generic picture

The quick brown fox jumps over the lazy dog

791 4062 14198 39935 35308 927 279 16053 5679
tokenization

language model

the

probability distribution over tokens (words)

• Process the first words

• Predict the probability of the next
word

• Sample the next word

• Process the first words

• … 

t

P(x(t+1) |x(1), x(2), …, x(t))

t + 1

19

How to train an LLM

• Self-supervised pretraining

• Output probabilities over all tokens (words)  
 

, where — logits (raw outputs)

• , where are true next tokens (one-hot encoded).

• Typically trained with very large batch sizes (millions of tokens). Highly parallelizable.

• Adam optimizer (or similar). SGD doesn’t work for transformers!

Pα = softmax(ℓα) =
exp(ℓα)

∑β exp(ℓβ)
ℓα

Cross-Entropy Loss = − ∑
s

∑
α

yα log(Pα) yα

Pα Pα Pα Pα Pα Pα

nanoGPT exercise!

Success of self-supervise training

20

• Labeled data is limited

• Unlabeled data is abundant 
(text, image, video)

• Led to GenAI revolution

• Some recent models were trained on 30
trillion tokens! 2020 2022 2024 2026 2028 2030 2032 2034

Year

1011

1012

1013

1014

1015

E
Æ
ec

ti
ve

st
oc

k
(n

um
b
er

of
to

ke
ns

)

GPT-3

PaLM

Falcon-180B
FLAN

Llama 3

DBRX

Stock of data

Dataset size projection

Median date of
full stock utilization
(5x overtraining)

Year

BERT - 3.3B tokens

source: 
2211.04325 “Will we run out of data? 
Limits of LLM scaling based on human-generated data”

1810.04805 “BERT: Pre-training of Deep Bidirectional  
Transformers for Language Understanding”

Tr
ai

ni
ng

 T
ok

en
s

https://arxiv.org/pdf/2211.04325

Self-supervise training: Scaling Laws

21

https://arxiv.org/pdf/2001.08361 
Scaling Laws for Neural Language Models

Performance predictably improves with scale

https://arxiv.org/pdf/2001.08361

Success of self-supervise training

22

https://situational-awareness.ai/  
Leopold Aschenbrenner, June 2024

https://www.theverge.com/2024/9/20/24249770/

https://situational-awareness.ai/
https://www.theverge.com/2024/9/20/24249770/

• Open weights example: DeepSeek R1, 671B parameters

• 671B parameters × 2 bytes per parameter

• For maximum context (32,092 tokens): KV cache requires around 280GB RAM

• Total VRAM Needed: ~1,680GB

• H100 GPU Count Calculation: 1,680GB ÷ 80GB per H100 = 21 GPUs (minimum) 
Including overhead for system operations, tensor parallelism, and other processes: 22-24 H100 GPUs

• Total Estimated Cost: 22 H100s at approximately $30,970 each = ~$681,340

• Try it yourself! https://huggingface.co/deepseek-ai/DeepSeek-R1

• You can try smaller models locally! https://huggingface.co/Qwen/Qwen3-0.6B

23

How large are Large Language Models?

https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/Qwen/Qwen3-0.6B

• Self-supervised training is the first step.

• Instruction Fine-Tuning (IFT / SFT with Instructions): 
 
- A crucial step for making models more "helpful and harmless" and better at following user
commands. 
- Fine-tune on a dataset of (instruction, response) pairs. 
- Teaches the model to respond to prompts in a desired format and style. 
- Example data: "Translate this sentence to French: {sentence}" -> "{French translation}"

• Alignment with Human Preferences: 
 
- Reinforcement Learning from Human Feedback (RLHF) 
- Direct Preference Optimization (DPO)

• Reasoning (RL in verifiable domains, e.g GRPO) 

24

Further training steps

see https://rlhfbook.com/

https://rlhfbook.com/

Thank you for your Attention

25

How it works

26

Source https://transformer-circuits.pub/2021/framework/index.html

https://transformer-circuits.pub/2021/framework/index.html

How it works: attention patterns and activations

27

Demo: https://huggingface.co/spaces/simon-clmtd/exbert

https://huggingface.co/spaces/simon-clmtd/exbert

Time Series

28

• Predicting the next value

• Global properties of  
time series

Time Series

29

Neutrino direction in IceCube

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/overview

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/overview

