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“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



Encoders

An encoder is a network that can take a signal and produce a code!

Typically, the code is a description of the signal, which could be images, sound,
etc. The code is usually “smaller” than the signal, not unlike a summary. An
image classifier is an example of an encoder.
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AutoEncoders

An AutoEncoder (AE) is a coupled pair of encoder and decoder. The encoder
maps signals into code, and the decoder reconstructs the original signal from
those codes.

The pair is trained to have the most accurate reconstruction: If you give a
signal x to an encoder E to get y = E(x), then the decoder D should ensure that
D(y) is close to x.
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One application is unsupervised feature learning, where it tries to construct a
useful feature set from a set of unlabelled images. We could use the code
produced as a source of features.



PCA as an autoencoder

A PCA is a linear AE. One can project a higher dimension down on (fewer)
principle components (encoding) and then “reconstruct” the original data
from the latent space, by choosing the low dimensional points in the original
dimensionality.

initial dim 3 . . pA
C_\w_gy\gww
AN Qinear SUISpace of . o

AR

initial dim 2




PCA as an autoencoder

A PCA is a linear AE. One can project a higher dimension down on (fewer)
principle components (encoding) and then “reconstruct” the original data
from the latent space, by choosing the low dimensional points in the original
dimensionality.

PCA Linear Autoencoder




Usage of AE

AEs are used for many things, such as:

e Unsupervised learning (e.g. clustering) on images, sound, graphs, etc.
e Compression (with loss!) of e.g images

* De-noising and inpainting images

e Anomaly detection

e Training on large dataset with few labels

Most AEs are CNN based and produced for images. However, the AE concept
is more general, and applies to anything, that can be passed through an NN.
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AEs are used for many things, such as:

e Unsupervised learning (e.g. clustering) on images, sound, graphs, etc.
e Compression (with loss!) of e.g images

* De-noising and inpainting images

e Anomaly detection

e Training on large dataset with few labels

Most AEs are CNN based and produced for images. However, the AE concept
is more general, and applies to anything, that can be passed through an NN.

The most central hyperparameters to consider are:
e Size of the latent space (code)

e Architecture of NN (layers and nodes)

e [ oss function

Number of
Layers

As we shall see, these HPs to some extend determine
what type of AE you’'re making.




Variational Auto-Encoders



Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is
“old” (80ies) and closely related to (the basis of) Generative Networks.

However, the latent spaces of AutoEncoders are “complex”, which means that
you can not simply choose a “random number” from this space, and expect it to
represent something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.



Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is
“old” (80ies) and closely related to (the basis of) Generative Networks.

Here is one natural strategy for generating images. Build an autoencoder. Now
generate random codes, and feed them into the decoder. It’s worth trying this
to reassure vourself that it really doesn’t work. It doesn’t work for two reasons.

First, the codes that come out of a decoder have a complicated distribution, and
generating codes from that distribution is difficult because we don’t know it. Notice

that choosing one code from the codes produced by a training dataset isn’t good
enough—the decoder will produce something very close to a training image, which

isn’t what we’re trying to achieve. Second, the decoder has been trained to decode
the training codes only. The training procedure doesn’t force it to produce sensible

outputs for codes that are near training codes, and most decoders in fact don’t do
SO.

[David Forsyth, 19.3.1, why AEs are not VAEs]
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Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is
“old” (80ies) and closely related to (the basis of) Generative Networks.

However, the latent spaces of AutoEncoders are “complex”, which means that
you can not simply choose a “random number” from this space, and expect it to
represent something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.

This requires a special type of AE, so-called variational autoencoder (VAE).
Here, the encoder outputs parameters of a pre-defined distribution (multi-dim
Gaussian) in the latent space for every input.

The constraint imposed by the VAE ensures that the latent space is regularised.
This in turn allows one to take a value from the latent space and produce a
realistic output.
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Variational AutoEncoders

A variational autoencoder thus uses a Gaussian-like latent space distribution. It is

probabilistic in nature - it produces random cases close (i.e. € away from) to the

original.
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Variational AutoEncoders

A VAE thus uses a Gaussian-like latent space distribution. It is probabilistic in
nature - it produces random cases close (i.e. € away from) to the original. This is
achieved by a “smart” loss function with the Kullback-Leibler (KL) divergence.
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loss = ||z — &[]z = ||z — dy(2)l, = [|z — dy(ea(z))ll
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Variational AutoEncoders

A VAE thus uses a Gaussian-like latent space distribution. It is probabilistic in
nature - it produces random cases close (i.e. € away from) to the original. This is
achieved by a “smart” loss function with the Kullback-Leibler (KL) divergence.

€T T

encoder decoder
Mz
z2~N(pzy02z)

eg(z) dy(2)

reconstruction loss = ||z — Z||s = ||z — dy(2)||, = ||z — dp(pz + 02€)|,
Hzs Oz 289(513), GNN(O’I)
similarity loss = KL Divergence = Dy (N (ptz,0,) || N(0,1I))

loss = reconstruction loss + similarity loss




Latent space illustration

The below animation shows how VAE latent spaces are a simplified
representation of the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:

Arithmetic in Latent Space
e B o=
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Shape
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space
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Latent space illustration

The below animation shows how VAE latent spaces are a simplified

representation of the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:

Interpolation in Latent Space
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AE Unsupervised

Since one might have no knowledge of the content of images (or sound, etc.),
training an AE is inherently unsupervised. The result is simply a latent space
that is a good representation of the images.

However, this can be used to cluster “less simple data”, as one can apply both
dimensionality reduction and/or clustering to the latent space.

This enables one to analyse very complex data in an unsupervised manner.
(e.g. “THow many zebra calls exists?”)
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AE Unsupervised

Since one might have no knowledge of the content of images (or sound, etc.),
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AE Compression

The latent space is also called the “code”, and is a good (but not perfect)
representation of the image.

This very “code” is an efficient way of compressing images - or anything else
that can be fed into an NN - down to a fixed size.

The approach has proven to be rather performant, competing with JPEG2000.

An Autoencoder-based Learned Image Compressor:

We propose a lossy image compression system using the deep-learning
autoencoder structure... []. Our aim is to produce reconstructed images
with good subjective quality subject to the 0.15 bits-per-pixel constraint.

cs > arXiv:1902.07385
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De-noising AutoEncoders

AutoEncoders can be used for de-noising for example images.

The method consists of first introducing noise (partially ruining the input),
and then train an autoencoder to produce the original image from the noisy

input. Once this is learned, noisy images can be de-noised using this network.
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De-noising AutoEncoders

Another way of making this work is perceptual loss. Here one does not (only)
compare the input and output images, but also (or only) the subsequent layers
in the CNN. These layers learns how images in general works, and thus aren’t
as affected by noise.

This idea can be taken further to reconstructing larger parts of an image. This
is called “inpainting”.

Tutorial on De-noising AutoEncoder
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http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model

Inpainting with AEs

AEs can also be used for “inpainting”, which means replacing damaged /lost
parts of an image.
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Inpainting with AEs

AEs can also be used for “inpainting”, which means replacing damaged /lost
parts of an image.

Original Image  Free-Form Input Our Result Original Image  Free-Form Input Our Result
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Inpainting with AEs

AEs can also be used for “inpainting”, which means replacing damaged /lost
parts of an image.

This can be used for estimating the volume of glaciers, given an altitude map.
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Generative Adversarial Networks
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Generative Adversarial Networks

Invented (partly) by Ian Goodfellow in 2014, Generative Adversarial Networks
(GANSs) is a method for learning how to produce new (simulated) datasets from
existing data.

The basic idea is, that two networks “compete” against each other:
e Generative Network: Produces new data trying to make it match the original.

* Adversarial (Discriminatory) Network: Tries to classify original and new data.

Typically, the generator is a de-convolutional NN, while the discriminating
(adversarial) is convolutional NN.

The concept is related to (Variational) Auto-Encoders.

“The coolest idea in machine learning in the last twenty years”
[Yann LeCun, French computer scientist]
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GAN drawing

Imagine that you want to write numbers that looks like hand writing.

Given a large training set, you can ask you GAN to produce numbers. At first it
will do poorly, but as it is “punished” by the discriminator, it improves, and at the
end it might be able to produce numbers of equal quality to real data:
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GAN drawing

The discriminator/adversarial can also be seen as an addition to loss function,
penalising (with A) an ability to see differences between real and fake:
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GANs producing face images

In 2017, Nvidia published the result of their “Al” GANs for producing celebrity
faces. There is of course a lot of training data... here are the results:




Evolution in facial GANs

There is quiet a fast evolution in GANs, and their ability to produce realistic
results....
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MNist data: Handwritten numbers

A “famous case” has been hand written numbers. The data consists of 28x28 gray
scale images of numbers. While that spans a large space, the latent space is
probably (surely!) much smaller, as far from all combinations of pixels and
intensities are present.
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MNist data: Handwritten numbers
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Anomaly Detection
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AE Anomaly Detection

By learning to replicate the most salient features in the training data under
some of the constraints described previously, the model is encouraged to learn
to precisely reproduce the most frequently observed characteristics.

When facing anomalies,
the model should worsen its reconstruction performance.
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AE Anomaly Detection

By learning to replicate the most salient features in the training data under

some of the constraints described previously, the model is encouraged to learn

to precisely reproduce the most frequently observed characteristics.

When facing anomalies,
the model should worsen its reconstruction performance.

In most cases, only data with normal instances are used to train the
autoencoder. In others, the frequency of anomalies is small compared to the
observation set, so that its contribution to the learned representation could be
ignored. After training, the autoencoder will accurately reconstruct "normal"
data, while failing to do so with unfamiliar anomalous data.

Reconstruction error (the error between the original data and its low
dimensional reconstruction) is used as an anomaly score to detect anomalies.

Note: It has been observed that sometimes the autoencoder “generalizes” so well that
it can also reconstruct anomalies well, leading to the miss detection of anomalies.
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AE Anomaly Detection

By learning to replicate the most salient features in the training data under
some of the constraints described previously, the model is encouraged to learn
to precisely reproduce the most frequently observed characteristics.

When facing anomalies,
the model should worsen its reconstruction performance.
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AE Training Assistance

Another AE use is “training assistance”. Image that you have a large data
sample, but only few labelled cases (i.e. few cases where you know the result).
The few labelled cases might not be enough to train a full CNN (which can
have millions of parameters!).
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AE Training Assistance

Another AE use is “training assistance”. Image that you have a large data
sample, but only few labelled cases (i.e. few cases where you know the result).
The few labelled cases might not be enough to train a full CNN (which can

have millions of parameters!).

But if you train an AE on the
large un-labelled dataset, then
once this network is in place,
you can continue from the
latent space.

Now using the small labelled
data set, you train a classifier
(or regressor).
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38



S
51N 1ce cores
ar e C |




The data

The data consists of two parts - a training set (control) and a test set (ice core):
e Training: Obtained from (controlled) samples, that was carefully selected.
e Testing: Obtained from melted ice core filtering process.

All the images are gray scale and scaled to be the same size: 128 x 128
In addition, we have 34 numerical features from the microscope imaging.
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The initial goals are:
e Be able to classify the training images (supervised learning).

e Apply the classification to the testing images (predictions).

But how can we then know, if there are other things in the ice cores?
40



Classification CNN architecture
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This architecture builds on the ResNet50 model.
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https://medium.com/@siddheshb008/resnet-architecture-explained-47309ea9283d

Performance

The CNN performance is rather good:
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Classification CNN architecture
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UMAP axis 2

UMAP clustering

Clearly, this clusters the sample quite well.
As was seen before, the two types of pollen - naturally - have some overlap.

Class

O Campanian validation

UMAP axis 1
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UMAP on testing set...

Applying the UMAP to the testing set... Well, how would you even do that?
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UMAP on testing set...

Applying the UMAP to the testing set... Well, how would you even do that?

The result using ParametricUMARP is as follows (dust and cont. dominates).
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Recon Recon Recon

Recon

Autoencoding the images

What size should the latent space be?
You should consider what quality of the (output) images you want.
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The unsupervised result...

Not using the training sample (which might bias the classification), we have

managed to produce the following distribution.
Dust is clearly separated, as is the pollen (though not internally) and the two

tephra types. Contaminations overlap mainly with the tephra.

.
3\
. .'0":.
e oo 0 0
S L (o, w
> e o ® o ° f.‘: S
P ST b 2
" .28 7 3 "’i;(: -
o2 3 o B e P *
¢ . 'Y % LA -.$q .
o & ® o s 2o ~ *!‘ -
N °s ) ® 2 ?Q.‘e‘% IS
N . . »y ee . o’ ° S #0% e 0. " ‘
y ~ el -4 o e & %" e .‘61\‘% oo
X o o ot o, o W oo, o . "-,..f.&‘..
s . ‘e Fe | . o Vo es o o
a ®e . * N . = 4 P |
=z . R AR y P . ~ ‘:'
5 L ... .. -~ " L) .., o . o : .
°
[ » ! L .. . o, oo . ...
» . .
4 ]
-. o o ..o * Py A2 o
") ..,..;' O o -
- s o Py
oy R B R L TR .
4 ™ *"r“.ﬁv W oo os’ ® 5 oot
a-‘o o x o' ) ’~:. ot 8" o 2 s o
» i ,.ﬁ'g ’.‘ P o L .
% ".c T .~‘ lz.ok ".. . ‘f *
'..l. c"'i'"o..‘ e g ~

48



THE ROYAL SOCIETY

PUBLISHING

Home Content v Information for ~

ROYAL SOCIETY
OPEN SCIENCE

Do you speak Zebra?

From recordings of Zebra sounds, the spectrogram can be clustered:

Institut

All Journals v ‘

®@O0WwW% DO | Signin

Aboutus v Sign up foralerts RSS feeds Submit

3 Open Access

M) Check for updates

View PDF

9, Tools «% Share

Cite this article v

Section
Abstract

1. Introduction
2. Method

3. Results

4. Discussion

Ethics

Research articles

Vocal repertoire and individuality in the
plains zebra (Equus quagga)

Bing Xie =], Virgile Daunay, Troels C. Petersen and Elcdie F. Briefer =2
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Abstract

Acoustic signals are vital In animal communication, and quantifying them Is fundamenta!
for understanding animal behaviour and ecology. Vocalizations can be classified into
acoustically and functionally or contextually distinct categories, but establishing these
categories can be challenging. Newly developed metheds, such as machine learning,
can provide solutions for classification tasks. The plains zebra is known for its loud and
specific vocalizations, yet limited knowledge exists on the structure and information
content of its vocalzations. In this study, we employed both feature-based and
spectrogram-based algorithms, incorporating supervised and unsupervised machine

learning methods to enhance robustness in categorizing zebra vocalization types.

The Variational AutoEncoder result is
then UMATP’ed into 2D, which shows
great overlap with the humanly
detected sounds.
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