Foundation Models and Fast Data Loaders

Inar Timiryasov (NBI)
inar.timiryasov@nbi.ku.dk

May 21, 2025

o Self-supervised Learning

e Foundation Models
 The Data Challenge

 Fast Data Loaders: Keeping the GPUs Fed

Recap on Transformers and Scaling Laws

Performance predictably
Improves with scale

But where can we find the
data to scale the models?

Labeled data Is scarce

7 4.2
6 —— L=(D/5.4-1013)70:095 | 5.6 —— L=(N/8.8-10%3)70-07¢
3.9
4.8
2" 36
ad 4.0
9 4
"g 3.3] 39
= 3]
3.0
2.4]
e L= (Cmin/2-3 . 108)—0.050
10 107 10> 1073 10! 10! 108 109 103 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of comput used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

https://arxiv.org/pdf/2001.08361
Scaling Laws for Neural Language Models

https://arxiv.org/pdf/2001.08361

Supervised and Self-supervised Learning

e Supervised learning: we have data and labels. The model is trained to predict the labels.
e Unlabeled data is abundant. Can we do without the labels?

e Self-supervised learning

supervised training

x BT y

self-supervised training

data model labels

How can we train without labels?

 Masked Prediction: We train models to predict hidden or "masked"” parts of the input
data (e.g., words in a sentence or patches in an image).

 Denoising: The model learns to reconstruct original, clean data from a corrupted or
Nnoisy version we create.

 Contrastive Learning: We teach the model to pull representations of similar (e.g.,
augmented) data points closer and push dissimilar ones further apart.

1. Contrastive pre-training

you has the highest probability you, they, your..
Output [CLS] how are \ doing | today @ [SEP]
BERT masked language model

R R R O

- s I g I g f son v I v I e Denoising Autoencoder Open Al CLIP

~— I

5 (Contrastive Language-Image Pre-training)

Foundation Models

* Definition: Models pre-trained on broad data at massive scale, designed to be
adapted (e.g., fine-tuned) to a wide range of downstream tasks.
(Stanford HAI definition)

* Scale: Data (petabytes), Parameters (billions to trillions).

 Generality: Adaptable to diverse tasks, often beyond their explicit training
objectives

« Examples: Bert, CLIP....

* Another term: Frontier Models — zero shot capabilities, no fine-tuning

Examples: GPT, Claude, Gemini, Grok, Llama, DeepSeek, Qwen

6

The Data Challenge

e Scale is crucial for foundation models

 Large model — GPU parallelism (data, pipeline, tensor)

- Data parallelism evenly distributes data across multiple GPUSs.
- Model parallelism distributes a model across multiple GPUs.
- Tensor parallelism distributes large tensor computations across multiple GPUs.

e |Large data — quickly loading it and transferring on GPU(s) is critical.

If your GPU is sitting idle waiting for data, you're wasting resources and
time.

Fast Data Loaders: Keeping the GPUs Fed

The Deep Learning revolution was powered by Compute!

Sweat, Blood, and Data Loading

The 1I/0 Bottleneck

o Definition: The I/0 (Input/Output) bottleneck happens when your
system's ability to read/write data is slower than its ability to process that

data.

 The Core Issue: Your powerful CPU or GPU is often idle, waiting for data
to be loaded from storage (like an SSD/HDD) or transferred to its memory.

e Key Symptoms:
 Low CPU/GPU utilization during computationally intensive phases.
 Tasks take much longer to complete than theoretically expected.

 Data loading/preprocessing steps visibly consume a large portion of the total time.

9

GPU Utilization

‘nvidia-smi terminal command is your friend!
(System Management Interface)

Name Persistence-M | Bus-Id
Temp Perf Pwr:Usage/Cap | Memory-Usage || GPU-Util | Compute M.
| |

NVIDIA GeForce RTX 3090 Off | 00000000:21:00.0 Off | |
o/C PO 283W / 350W || 4733M1B / 24576M1iB || 54% Default |
| | N/A |

e GPU-ULtil: Percentage of time the GPU's processing cores were actively computing.
- Aim for consistently high values (e.g., >90%) during intensive training.
- Low Util (like 54%): Strong indicator the GPU is often idle, typically waiting for data (I/O bound) or CPU tasks.
- Caveat: 100% util doesn't always mean peak theoretical performance. Throughput can still be limited by memory
bandwidth bottlenecks or suboptimal kernel execution.

e Memory-Usage: Shows GPU video RAM (VRAM) currently allocated versus total available

. The GPU's current performance state. PO means maximum performance. Other states (e.g., P2, P8) mean reduced
performance/power.
. Current GPU power consumption versus its maximum rated capacity.

10

GPU Utilization

(base) [1nhar@hepd4 ~]1% nvidia-smi
Tue May 20 17:52:08 2025

| NVIDIA-SMI 555.42.06 Driver Version: 555.42.06 CUDA Version: 12.5
| m— e - e L e e P e e e L L PP e e +
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC
Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M.
| |
e T T e T S T T R S T T N T T T
NVIDIA GeForce RTX 3090 Off | 00000000:21:00.0 Off |
P8 10W / 350W | 4MiB / 24576MiB | Default
| |
e e T e e P e e e e it +
NVIDIA GeForce RTX 3090 Off | 00000000:4D:00.0 Off |
149W / 350W ' 4276M1B / 24576M1iB || 100%

The 1I/0 Bottleneck

* Slow storage media (e.g., hard disk drives vs. faster SSDs, distributed
filesystems like LUSTRE could be unpredictable).

* |nefficient data access patterns (e.g., reading many small files repeatedly).
e Data formats not optimized for quick loading or random access.

* Limited bandwidth between storage, CPU memory, and GPU memory.
 CPU-bound data preprocessing or augmentation that stalls the pipeline.

* |nsufficient parallelism in the data loading process (e.g., single-threaded
loading).

12

torch.utils.data.Dataset (Code on GitHub)

* An abstract class in PyTorch representing your collection of data samples.
* Separates data loading and preprocessing logic from your model training loop.

 Seamlessly works with torch.utils.data.Datal.oader for efficient batching, shuftling, and parallel
data loading.

 Key Requirement: To create your own dataset, you subclass torch.utils.data.Dataset and must
override two methods:

 _len__(self): Returns the total number of samples in the dataset. Used by Datal.oader to know
the dataset size.

 _ getitem__(self, idx): Fetches and returns the sample (e.g., data tensor and label tensor) at the
given index idx. This is where you'll typically load data from disk, apply transformations, etc.

real world example: https://github.com/timinar/Babyl lama/blob/main/babylm dataset.py

13

https://github.com/timinar/BabyLlama/blob/main/babylm_dataset.py

torch.utils.data.DatalLoader (Code on GitHub)

* Input: A torch.utils.data.Dataset object

e Batching: Automatically groups individual samples from the Dataset into batches of a
specified size.

o Shuffling: Optionally shuffles the order of data at the start of each epoch to improve
model training.

e Parallel Loading: Can use multiple CPU worker processes (hum_workers) to load data
in the background, preventing I/O bottlenecks and keeping the GPU fed.

« Memory Management: Offers options like pin_memory for faster CPU-to-GPU data
transfers.

more details: https://docs.pytorch.org/docs/stable/data.htmli#torch.utils.data.Datal oader

14

https://docs.pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

Other types of Datasets

* |terable-style Datasets (torch.utils.data.lterableDataset)

 For datasets where data is read sequentially, like a data stream, rather than by random access
using an index.

 You implement __iter__(self) (which yields samples).

 Note: DatalLoader handles these differently (e.g., num_workers has specific considerations,
shuffling is typically done within __iter_).

 Example: https://qgithub.com/timinar/PolarBERT/blob/main/src/polarbert/icecube dataset.py

* Working with Image Folders (torchvision.datasets.ImageFolder)

* You have images organized in a directory structure like: dataset_root/class_A/image1.jpg,
dataset_root/class_B/imageZ2.jpg

* |ImageFolder automatically discovers images, infers class labels from subfolder names, and can
apply specified transformations.

15

https://github.com/timinar/PolarBERT/blob/main/src/polarbert/icecube_dataset.py

Data Handling Technicalities & Performance Tips

* Useful torch.utils.data Utilities:
e ConcatDataset: Merges multiple datasets sequentially (e.g., combining data from different sources or augmentation passes).
* Subset: Extracts a specific portion of a dataset using a provided list of indices (useful for specific selections or k-fold cross-validation).
 random_split: Conveniently splits a dataset into random, non-overlapping new datasets (ideal for creating train/validation/test sets).
« Strategies for Large Datasets & Performance:
* Implement an Efficient __getitem__ (for map-style Dataset):

e Lazy Loading: Crucially, load data (e.g., image from disk, specific rows from a large file) only when that specific item is requested by
__getitem__.

e Lightweight __init__: Avoid loading the entire dataset into RAM during __init__. Instead, store file paths, metadata, or pointers.

Specialized Data Storage Formats:
 WebDataset (.tar files): Excellent for streaming large image or sequence datasets, reads data sequentially from TAR archives.
 HDF35: Hierarchical format, good for large numerical arrays; supports chunking, compression, and partial reads.

 Apache Parquet: Columnar storage format, highly efficient for tabular data, offers good compression and predicate pushdown (filtering)
when reading with libraries like pyarrow.

« Memory-Mapped Files
16

Data Augmentation: Where?

* |dea: Artificially create diverse training samples from your existing data (e.g., flipping images, altering text) to improve model
robustness and reduce overfitting.

e Where:

« Offline (Pre-processing): Generate and save augmented versions before training. Uses more disk space; simpler loading
logic.

* Online (On-the-fly): Apply augmentations dynamically during data loading for each epoch. More flexible; less disk space.

« CPU-based: Common (e.g., in DataLoader workers using torchvision.transforms). Can be a bottleneck if
transformations are heavy.

« GPU-based: For faster, complex augmentations.

0 po——————y) p= — | P— —
mo“ m‘ m‘
P S S 0 Gl
m% m \ i
0 f—na :
01 1, i

o)

o

17

Caching & Buffering

* |dea: Store frequently accessed data or pre-loaded items in faster memory (e.g., RAM, fast SSD) to avoid
repeated slow reads from primary storage (HDD, network).

e Common Strategies:
* Full Dataset in RAM: If your dataset is small enough, load it entirely into memory at the start.

» Selective Caching: Cache only the most frequently used samples or pre-process and cache transformed
items.

* Prefetch Buffers (e.g., in DatalL.oader): Automatically load upcoming batches into a memory buffer while
the current batch is being processed.

* Disk Caching: Use a fast local SSD as a cache for data originating from slower network storage or HDDs.
Usually GPU nodes have they own fast storage
#!/bin/bash

if [! -e /dev/shm/filtered_all_big_data.db]1; then
echo "Stage to /dev/shm/"
time cp filtered_all_big_data.db /dev/shm/
else
echo "File already staged to /dev/shm"
ls —-al /dev/shm/filtered_all_big_data.db
du -skh /dev/shm/filtered_all_big_data.db
fi

18

Profiling & Tools

* Profiling — measuring time and memory consumption.
e nvidia-smi, htop / top, iotop

* PyTorch Profiler (torch.profiler)

200,000
150,000
100,000

50,000

Step Time (microseconds)

0

Step

B Kernel [Memcpy [Memset | Runtime |l DataLoader |l CPU Exec | Other

19

Summary of Data Loading Best Practices

 Use num_workers wisely.
* Consider pin_memory and prefetching.

 Choose appropriate data formats for your dataset size and access
patterns.

* Profile your pipeline!

* For perspective, big labs have they own filesystems!
https://github.com/deepseek-ai/3FS

20

https://github.com/deepseek-ai/3FS

