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What are we trying to solve?

Can we build a program that can do automatic anomaly detection of X-Ray
images of food while keeping up with the high-throughput demands of food
production?
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Automated feature extraction
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How are the CNN results?

Good results (>90 %) ... but could be better.

The approach is supervised.

Anomalies are far in between.

There’s a high probability that we cannot cover the entire problem domain.

Which gave me an idea ...
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Can we construct a model purely from "good" data samples?

Alina Sodes Master’s thesis investigated whether this is possible.

She found that Auto Encoders could be a viable approach.
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Auto Encoder (AE)
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How do we predict with AEs?

1 Preprocess image to counter X-ray effects.

2 Apply the AE to the image.

3 Compare the input to the output.

4 If they match, the image was a "good" sample.
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AE performance (kitkat)

Accuracy of 98 %
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AE performance (new potatoes)

Accuracy of 86 %
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How do we improve the performance?

After Alina Sode’s master thesis, I further investigated using AEs.

Alina Sode trained on the entire image, which means that the model has to learn
the shape.
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The data
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Virtually peel the potatoes

Good

Bad
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AE - good sample

Input

Output

Difference
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AE - bad sample
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Image similarities

We can clearly see the difference, so it should be possible for the machine as
well.

Alina Sode looked at SE, IMED, SSIM, ZNCC, GMSD, with SSIM working best...
in some cases.

I further looked at RMSE, PSNR, FSIM, ISSM, SRE, SAM, UIQ and SH.

From these, FSIM worked the best on these images.

FSIM works better than SSIM, due to the errors we see.
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AE + FSIM - distribution
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AE + FSIM - ROC
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Conclusion

• CNNs work great - but are supervised.

• AEs can work great - and are semi-supervised.

• Preprocessing is important.

• Choosing the right similarity measure is important.
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