Applied ML

Diffusion Models

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”

Diffusion

Diffusion models is a class of models for computer vision that a capable of

* Image generation
* Image de-noising
* Image in-painting
* Image super-resolution

Diffusion models consist of
three parts:

1. Forward diffusion

2. Reverse diffusion

3. Sampling procedure

Po(X¢-1|x¢)

q(x¢|xi-1)

G —————- Forward Diffusion

------ -» Reverse Diffusion

They are build on the idea, that if you apply a known process (diffusion) on
e.g. images, then by finding the reverse process, one can generate new images.

It is thus a generative model type. OpenAl’s Dall-E 2 model - capable of
generating images from text - is based on diffusion.

Diffusion

Diffusion has a different ML architecture from the other “classic” methods of
generative models. In diffusion one uses a repeated alteration (not NN layers).

GAN: Adversarial x' x Discriminator 2 Generator e
. X
training D(x) G(z)
Old but good
VAE: maximize X Sl Z - x!
variational lower bound q¢(z|x)
Flow-based models: X > Al -z Inllfrse - x
Invertible transform of f (x) f (z)
distributions
SOTA today
Diffusion models: X0 X1 . Xo - .z
Gradually add Gaussian - - - - - - - - -—-——-—- *+-------
noise and then reverse

https://lilianweng.github.io/posts/2021-07-11-diffusion-models

Forward Process

Forward diffusion process (fixed)

Data Noise
T
q(xxi-1) = N(x¢; V1 — Bixe—1, BI) = q(X17|X0) = Hq(xt|Xt—1) (joint)
t=1
* No learning

« Sample random numbers from a gaussian
« Add them with some scaling to all of the pixels
* Repeat T times

* End product — pure noise //(0,I)

Forward Process

* Noising is a Markov process and noise is Gaussian
« Can jump to any stage directly

Forward diffusion process (fixed)

Data Noise

Define oy = H(l — Bs) = q(x¢x0) = N(x¢; vVagxo, (1 — ap)l)) (Diffusion Kernel)

s=1

For sampling: x; = /oy xg+ /(1 —a¢) ¢ where € ~ N(0,1)

3 values schedule (i.e., the noise schedule) is designed such that a7 — 0 and ¢(x7|x() =~ N (x7:0,1))

See https:/ / cvpr2023-tutorial-diffusion-models.github.io /

https://cvpr2023-tutorial-diffusion-models.github.io/

Reverse (de-noising) process

We want to obtain q(x¢1 | x¢).
If B¢ is small, q(xe1 | x¢) will be Gaussian.
This means that we can approximate q(x¢1 | x¢) with a neural network.

Diffused Data Distributions

a(xo) a(x,) a(xy) a(xs) q(x7)

a(Xo ;) alx; [x,) a(xz[xs) a(x3]xs) A(xr.1 [%7)

Reverse (de-noising) process

_ Reverse denoising process (generative)

Data Noise

p(x7) = N(x7;0,1)
po(xt—1|xt) = N(x¢—1; pg(xy, t)‘, o71)

= po(xo.7) = p(xp) [[po(xe—11x)
t=1

Trainable network
(U-net, Denoising Autoencoder) 19

* In practice, people predict amount of the noise added on the previous step
directly

+ & = MSEC(¢,_; — €y(x,, 1)), where €, is added noise

Diffusion Summary

To some (simple) degree, the diffusion model setup can be summarised by
the below two algorithms.

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: xr ~ N(0,T)
2: X0 r~ q(Xo) 2: fort=T,...,1do
i' b~ Ij{;l(l(f)orlr)n({l, .o T'}) 3: z~N(0,I)ift > 1,elsez=0
€~ ’ >
5: Take gradient descent step on 4 Xp-1 = \/% Xt — \}ﬁeg(xt,t)) + 0tz
Vo ||€—(-:9(\/C_}:tx()+\/1—O_AtE,If)H2 5: end for
6: until converged 6: return xo

The training part is to train the algorithm to estimate the amount of noise
added at each step.

The sampling part is to produce new images from sampling the noisy space
and then using the trained part.

Diffusion example problem

Take images, and apply the diffusion forward and and then backwards in
pixel space... i.e. NOT LATENT diffusion.

Latent Diffusion “Overview”

Here is an attempt at labelling the whole process (& Latent) and all the parts...

N .
ector Olsy
Image ﬂ\waﬂ/" LatentV Forwag Y Latens

Latent Space \/(€onditioning

Zy q ey / . V—— i
L Diffugigzrf II%tro%)ess Eemanth
Ma

Text
Repres |
entations |

mages

7T T Image,
r%ﬁ "I"yner

|
Rever/§e iffusiovvStep
&sattention switch skip connec concat M\P
to - ;
N

10

https://towardsdatascience.com/what-are-stable-diffusion-models-and-why-are-they-a-step-forward-for-image-generation-aa1182801d46

Denoising Diffusion Implicit Model

This specific type of model can be considered a Stochastic Differential
Equation (SDE).

Forward diffusion process (fixed)

Forward diffusion SDE: dx, = —%B(t)xt dt + /Bt dw,
drift t'erm diffusic:n term

(pulls towards mode) (injects noise)

11

Denoising Diffusion Implicit Model

This specific type of model can be considered a Stochastic Differential
Equation (SDE).

S a Forward diffusion process (fixed)

Forward diffusion SDE:

dx; = —%ﬁ(t)xt dt + /B(f) dw,

drift term diffusion term
(pulls towards mode) (injects noise)

drift term diffusion term

r L 1 l__\
Reverse diffusion SDE: dx, = —%6(t)xt — B(t)Vy, log q:(x;) | dt + /B(t) da,

“Score Function” 12

Denoising Diffusion Implicit Model

Putting the two parts together as ODE/SDE, one makes it possible to use
advanced (existing) algorithms for solving these.

Generatlon with Reverse Diffusion SDE q(xT) Generatlon with Probability Flow ODE q(xT)

. - v
Generative Reverse Diffusion SDE (stochastic): Generative Probability Flow ODE (deterministic):
1 1
dx; = —EIB(t) [x¢ + 2s9(x¢,t)] At + /B(t) dw, dx; = —Eﬂ(t) [x¢ + se(x¢,t)] dt

 Accelerate generation
« Enables use of advanced ODE/SDE solvers

13

Example uses of DDIM

Apart from images, it can be used in many other places for generation...

Reconstructed particles

Jet features - -

L]
— @ - -
g B

- JetNet dataset — gluon jets, up to 30 constituents

 Number of constituents known in advance
* DDIM formulation — solve SDE/ODE to generate data

14

Bonus Slides

Diffusion

Forward (noising) diffusion process (simple!):

Q($t|33t—1)

T T %

D &

>

Lt

—p r ot —— xT

(xt|xt 1

Reverse (de-noising) diffusion process (not simple!):

N(xt, V1= Bxi1,B8:1) q(x1.7[%0)

T
- H q(x¢|x¢-1)
=1

‘-——’

P9Xt1|xt
@H H@ @H H

From https:/ /www.superannotate.com /blog / diffusion-models

16

https://www.superannotate.com/blog/diffusion-models

Stochastic Differential Equation

The process can be considered a Stochastic Differential Equation, which in
small steps transforms the image to noise.

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

score functlon

f(xt tk log p: (i]dt+g

Reverse SDE (noise — data)

17

Score-based Generative Models

In the reverse step, the model tries to reverse the process of noise addition.
SGMs teaches the model to start from noisy data and progressively remove
noise to reveal a more clear and detailed image.

Data Forward SDE Prior Reverse SDE Data

@ dz = f(z,t)dt + g(t)dw dr = [f(.r.t) - g (t)V, logp,(.r): dt + g(t)d@
: ¥)

\/ \/

m(z) pe(x) » pr(z) p:(z) » pplz)

Thus, the SDE maps data to a noise distribution (the prior), and reverse this
SDE for generative modelling.

18

Denoising diffusion probabilistic models

DDPMs are a specific type of Diffusion Model, that focuses on removing
noise from data in a probabilistic way.

Data Deatructmg data by dddmg nmbe m— Nmse

[
[
i

a

_(Probabillty of perturbed data A

Data <——— Generating samples by denomng —— Noise

One denoising step

During training, they learn how noise is added to data over time and how to
reverse this process to recover the original data. This involves using
probabilities to make educated guesses about what the data looked like
before noise was added.

This approach is essential for the model's capability to accurately reconstruct
data, ensuring the outputs aren’t just noise-free but also closely resemble the
original data.

19

Denoising Diffusion Implicit Model
The scoring is slightly complicated...

Reverse diffusion SDE: dx, = —%ﬁ(t)xt — B(t)V, log q:(x;) | dt + /B(t) d@,

—'_l
“Score Function”

We can learn V, log g,(x,) with NN, however direct regression is not possible.

Instead, we can diffuse individual data points x. Diffused g,(x,| x) is tractable.
Denoising score matching:

Inéin EtNU(O,T)EXONqO (XO)EXt ~qt (xt |X()) | |Se (Xt, t) - vxt 1Og qt (Xt |x0) | |g

diffusion data diffused data neural score of diffused
time ¢ sample X sample x; network data sample

“Variance Preserving” SDE:
1
dxt = - 53(t)x,, dt + \ ‘B(t) dwt

gt (x¢|%0) = N (%45 Ve X0, 071)

: 1
min Etntt(0,7) Exgngo(x0) Eenn(0,1) 0—2||€ — €g(x¢, 1) |§ Same loss as before!
t

20

