

SciML: model-based, data-efficient machine learning

Simple Harmonic Oscillator

$$m\ddot{x} + kx = 0$$

Simple Harmonic Oscillator?

$$m\ddot{x} + kx = 0$$

Pendulum

NN = Universal approximators

$$x(t) = NN(t)$$

NN = Universal approximators

$$x(t) = NN(t)$$

NN = Universal approximators

$$x(t) = NN(t)$$

NN = Universal approximators

$$x(t) = NN(t)$$

NN = Universal approximators

$$x(t) = NN(t)$$

 2^{nd} order ODE \rightarrow 1st order system:

$$\dot{x} = v$$

$$\dot{v} = -\frac{kx}{m}$$

$$m\ddot{x} + kx = 0$$

 2^{nd} order ODE \rightarrow 1^{st} order system:

$$\dot{x} = v$$

$$\dot{v} = -\frac{kx + NN(v)}{m}$$

Pendulum

$$m\ddot{x} + kx = 0$$

 2^{nd} order ODE \rightarrow 1^{st} order system:

$$\dot{x} = v$$

$$\dot{v} = -\frac{kx + NN(v)}{m}$$

$$m\ddot{x} + kx = 0$$

 2^{nd} order ODE \rightarrow 1st order system:

$$\dot{x} = v$$

$$\dot{v} = -\frac{kx + NN(v)}{m}$$

Pendulum

$$m\ddot{x} + kx = 0$$

 2^{nd} order ODE \rightarrow 1^{st} order system:

$$\dot{x} = v$$

$$\dot{v} = -\frac{kx + NN(v)}{m}$$

$$m\ddot{x} + kx = 0$$

 2^{nd} order ODE \rightarrow 1^{st} order system:

$$\dot{x} = v$$

$$\dot{v} = -\frac{kx + NN(v)}{m}$$

$$m\ddot{x} + kx = 0$$

 2^{nd} order ODE \rightarrow 1st order system:

$$\dot{x} = v$$

$$\dot{v} = -\frac{kx + NN(v)}{m}$$

Learnt representation of v

$$m\ddot{x} + kx = 0$$

Damped Harmonic Oscillator!

 2^{nd} order ODE \rightarrow 1^{st} order system:

$$\dot{x} = v$$

$$\dot{v} = -\frac{kx + bv}{m}$$

Learnt representation of v

$$m\ddot{x} + b\dot{x} + kx = 0$$

Machine learning

```
function loss_nn(θ)
    y_pred = NN(x_train, θ)
    loss = MSE(y_pred, y_train)
    return loss
end
```

Scientific

```
function damped_harmonic(u, p, t)
    x, v = u  # states
    m, k, b = p  # parameters

\partial x = v
\partial v = -1 / m * (k * x + b * v)

return [\partial x, \partial v] # derivatives end
```

Scientific Machine Learning

```
function sciml_harmonic(u, p, t) 
 x, v = u # states 
 m, k, \theta = p # parameters 
 \partial x = v \partial v = -1 / m * (k * x + NN(v, \theta)) 
 return [\partial x, \partial v] # derivatives 
 end
```


Structure

- The major advances in machine learning were due to encoding more structure into the model
- More structure = faster and better fits from less data
- Convolutional Neural Networks are structure assumptions

VGG-16 CNN (ImageNet)

Extrapolation and generalization

 LIGO Black Hole dynamics from the gravitational wave data Upon denoting $\mathbf{x} = (\phi, \chi, p, e)$, we propose the following family of UDEs to describe the two-body relativistic dynamics:

$$\dot{\phi} = \frac{(1 + e\cos(\chi))^2}{Mp^{3/2}} (1 + \mathcal{F}_1(\cos(\chi), p, e)),$$
 (5a)

$$\dot{\chi} = \frac{(1 + e\cos(\chi))^2}{Mp^{3/2}} (1 + \mathcal{F}_2(\cos(\chi), p, e)),$$
 (5b)

$$\dot{p} = \mathcal{F}_3(p, e), \tag{5c}$$

$$\dot{e} = \mathcal{F}_4(p, e), \tag{5d}$$

TICRA

- Founded in 1971
- Copenhagen, Denmark
- Electromagnetic radiation
- Flagship product: TICRA Tools
- Long partnership with the European Space Agency (ESA), spacecraft manufacturers, and satellite operators
- 50 employees≥ 80% with MSc~ 60% with Ph.D.

TICRA Core Customers

- Space agencies
- Satellite operators
- Satellite, payload and antenna manufacturers

Design Philosophy – Scientific Machine Learning

Core assets:

- Tailored, state-of-the art simulation and optimisation tools for antenna design
- Solutions to antenna design task that competitors cannot currently solve

ML-AIDED ANTENNA DESIGN

Why incorporate physics?

- Traditional methods for solving SciML problems can be slow
 - ML surrogate models could alleviate computational bottlenecks
- SciML data has rich structure that we can take advantage of
 - Data is generated by physics and therefore well-defined (unlike e.g. predicting human behaviour)
 - The physics is often theoretically well-understood
- Incorporating physics makes prediction task easier
 - Shrinks space of possible solutions
 - Acts as a regularizer
 - Can allow for extrapolation, instead of just interpolation
 - Can make models more interpretable and/or trustworthy

Basic example

Transformed

Enforcing physics through soft constraints: PINNs

Introduced in 2019

Journal of Computational Physics

Volume 378, 1 February 2019, Pages 686-707

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

M. Raissi ^a, P. Perdikaris ^b $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, G.E. Karniadakis ^a

- Idea:
 - \circ Given a PDE, e.g. $(
 abla^2 + k^2) {f E}({f x}) = 0$, approximate its solution with a NN
 - Train it to minimize

$$\underbrace{|\mathbf{E}^{\mathrm{pred}}(\mathbf{x}_b) - \mathbf{E}^{\mathrm{true}}(\mathbf{x}_b)|^2}_{\mathrm{data\ loss}} + \underbrace{|(\nabla^2 + k^2)\mathbf{E}^{\mathrm{pred}}(\mathbf{x}_c)|^2}_{\mathrm{PDE\ loss}}$$

Enforcing physics through soft constraints: PINNs

>14k citations, making it the most cited numerical methods paper of the 21st century

Still, lots of problems:

- Training instabilities, especially in high-frequency domain
- Only works for small networks (typically less than 0.5M parameters)
- No accuracy guarantees, as opposed to traditional numerical methods
- Uses expensive second order optimization methods (L-BFGS), which has implications for activations functions

etc.

Characterizing possible failure modes in physics-informed neural networks

Aditi S. Krishnapriyan*,1,2, Amir Gholami*,2, Shandian Zhe³, Robert M. Kirby³, Michael W. Mahoney^{2,4}

 Suppose you were designing an antenna, trying out different designs

 Every change requires you to wait minutes before you can see if it got better

 Train a surrogate model to predict the antenna's EM field from the design parameters!

From design parameters, predict

• EM field in grid (3264 predicted variables)

From design parameters, predict

- EM field in grid (3264 predicted variables)
- Expansion (SWE) coefficients encoding the EM field (96 predicted variables)
 - Compressed representation
 - Guarantees that the predicted field is a solution to Maxwell's equations (!!)

Good performance, but quite jittery/unphysical

Still good performance, but much more physically correct (this stuff matters to domain experts!)

Thank you!

Christian Buus Michelsen
Senior ML Engineer @ TICRA
Scientific Machine Learning 2025-06-04
https://github.com/ChristianMichelsen/SciMLPresentation