


SciML: model-based, data-efficient machine learning
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Simple Harmonic Oscillator

Pendulum
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Simple Harmonic Oscillator?

Pendulum
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Neural networks

NN = Universal approximators Pendulum
(Universal Approximation Theorem, G. Cybenko 1989)
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Neural networks

NN = Universal approximators Pendulum
(Universal Approximation Theorem, G. Cybenko 1989)
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Neural networks

Pendulum

@ Data
Neural Network

NN = Universal approximators
(Universal Approximation Theorem, G. Cybenko 1989)
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Neural networks

Pendulum

@ Data
Neural Network

NN = Universal approximators
(Universal Approximation Theorem, G. Cybenko 1989)

v(t) = NN(t)
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lteration = #1
Loss = 1..158
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Neural networks

Pendulum

@ Data
Simple
Neural Network

NN = Universal approximators

(Universal Approximation Theorem, G. Cybenko 1989)
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Harmonic Oscillator?

2"d order ODE — 15t order system: Pendulum
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Harmonic Oscillator?

2"d order ODE — 15t order system: Pendulum
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Harmonic Oscillator?

d .
2nd order ODE — 15t order system: Pendulum
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Harmonic Oscillator?

2"d order ODE — 15t order system: Pendulum
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Harmonic Oscillator?

Phase space

2"d order ODE — 15t order system:
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Harmonic Oscillator?

Phase space

2"d order ODE — 15t order system:
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Harmonic Oscillator?

2"d order ODE — 15t order system:

Learnt representation of v

Xr =T NN(V)
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Damped Harmonic Oscillator!

nd st .
2"? order ODE — 15t order system: Learnt representation of v
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Machine learning

function loss nn(8)

y_pred = NN(x_train, ©) Scientific Machine Learning
loss = MSE(y_pred, y_train)

return lLoss
end

function sciml_harmonic(u, p, t)
X u
m, K

. o o 0=
Scientific T TN )

function damped_harmonic(u, p, t) return [ox, av]
u end

=-1/m*x (k * X + b * v)

return [dx, av]
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Structure

* The major advances in machine
learning were due to encoding more
structure into the model

e More structure = faster and better fits
from less data

* Convolutional Neural Networks are
structure assumptions

Input Image
224 x 224 x3

Feature Extractor Classifier
VGG-16 VGG-16
Convolutional Base Dense Classifier

FC-6 FC-7 FC-8
y

g £ 3F 3
14 x 14 x 512 1x1x4096 1x1x1000

Tx7Tx512

@ convolution+ReLU
max pooling
“~) fully connected+ReLU

VGG-16 CNN (ImageNet)
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(arXiv:2102.12695)

EXtra pOlat|On d nd generalization Upon denoting x = (¢, x, p, e€), we propose the follow-

ing family of UDEs to describe the two-body relativistic

. d ics:
e LIGO Black Hole dynamics from the YRS
. . 2
gravitational wave data o= U +&;§§g")) (1+ Fi(cos(x),p,e)),  (5a)
2
X = a +AZ;2%X)) (1 + Fa(cos(x),p,e€)), (5b)
p = f3(p, 6)7 (50)
€= -7:4(pa 6), (5d)
0.1 |
z
“j% 0
=
—0.1
1-10° 1.5-10° 2.10° 2.5.10° 3.10°
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TICRA

&) Founded in 1971

—  TICRA TOOLS ~

? Copenhagen, Denmark

Electromagnetic radiation GRASP ESTEAM CHAMP3D QUPES  POS uQ

s Flagship product: TICRA Tools

% Long partnership with the European Space \\&\ \i\\ esa
Agency (ESA), spacecraft manufacturers, and - K\\Ej—
satellite operators U :

\“ European Space Agency

® 50 employees
> 80% with MSc
~ 60% with Ph.D.
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TICRA Core Customers

* Space agencies
» Satellite operators

» Satellite, payload and antenna manufacturers

™
\\\\\\“\k w
K e S a A ’ R B u s @Bﬂf’”ﬂ ’ I ':I oEnLCiﬁc-tr Transform.

European Space Agency
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Design Philosophy — Scientific Machine Learning

Core assets:
ML-AIDED ANTENNA DESIGN

 Tailored, state-of-the art simulation and
optimisation tools for antenna design

* Solutions to antenna design task that
competitors cannot currently solve

Advanced Algorithms
High quality data
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Why incorporate physics?

* Traditional methods for solving SciML problems can be slow
o ML surrogate models could alleviate computational bottlenecks

e SciML data has rich structure that we can take advantage of

o Data is generated by physics and therefore well-defined
(unlike e.g. predicting human behaviour)

o The physics is often theoretically well-understood

* Incorporating physics makes prediction task easier
o Shrinks space of possible solutions
o Acts as a regularizer
o Can allow for extrapolation, instead of just interpolation
o Can make models more interpretable and/or trustworthy
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Basic example

Original Transformed

]

il

/

i

def cart2pol(x, y):
"""Convert from 2D Cartesian to polar coordinates."""

rho
phi

np.sqrt(x**2 + y**2)
np.arctan2(x, y)

~NOo o ks WN

return rho, phi







Enforcing physics through soft constraints: PINNs

W’.{S@K}iﬁ”f{)

s h \¥

e Introducedin 2019 I%];gg; Journal of Computational Physics

Volume 378, 1 February 2019, Pages 686-707

Physics-informed neural networks: A deep
learning framework for solving forward and
inverse problems involving nonlinear partial
differential equations

M. Raissi ¢, P. Perdikaris ® & =, G.E. Karniadakis ®

* Idea:
o Given a PDE, e.g. (V2 + k*)E(x) = 0, approximate its solution with a NN

o Trainitto minimize  |EP™4(x;) — E™(x3)|% + [(V? + k?)EP™(x,)|?

\ - N

"V a

data loss PDE]rloss
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Enforcing physics through soft constraints: PINNs
>14k citations, making it the most cited numerical methods paper of the 21st century

Still, lots of problems:
* Training instabilities, especially in high-frequency domain
* Only works for small networks (typically less than 0.5M parameters)

* No accuracy guarantees, as opposed to traditional numerical methods

* Uses expensive second order optimization

methods (L-BFGS), which has implications ch o e fail a
for activations functions ~haracterizing possible fallure modes
in physics-informed neural networks

 etc.

Aditi S. Krishnapriyan*'2, Amir Gholami*?,
Shandian Zhe?, Robert M. Kirby?, Michael W. Mahoney?*
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Enforcing physics through hard constraints: Via problem formulation

* Suppose you were designing an antenna,
trying out different designs

* Every change requires you to wait
minutes before you can see if it got
better

* Train a surrogate model to predict the
antenna's EM field from the design
parameters!
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Enforcing physics through hard constraints: Via problem formulation

Design —> Meshmg Mesh EM solver Currents LU Field
parameters algorithm method

A

> ML method

From design parameters, predict
e EM field in grid (3264 predicted variables)
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Enforcing physics through hard constraints: Via problem formulation

4 )

Design —>» Meshmg Mesh EM solver Currents Integration Field SWE
parameters algorithm method
A A

. J

> ML method / /

E(T7 0, Qb) — k\/z Z QsmnFsmn(ra 0, Qb)
From dESign paramEterS, prediCt smmn

e Expansion (SWE) coefficients encoding the EM field (96 predicted variables)
o Compressed representation
o Guarantees that the predicted field is a solution to Maxwell's equations (!!)
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Enforcing physics through hard constraints: Via problem formulation

|E| [dBw] . LE [rad]
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Good performance, but quite jittery/unphysical
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Enforcing physics through hard constraints: Via problem formulation

|E| [dBw] . LE [rad]
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Still good performance, but much more physically correct
(this stuff matters to domain experts!)
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