1
Fundamental concepts

1.1 Probability and random variables

The aim of this book is to present the most important concepts and methods
of statistical data analysis. A central concept is that of uncertainty, which can
manifest itself in a number of different ways. For example, one is often faced
with a situation where the outcome of a measurement varies unpredictably upon
repetition of the experiment. Such behavior can result from errors related to the
measuring device, or it could be the consequence of a more fundamental (e.g.
quantum mechanical) unpredictability of the system. The uncertainty might stem
from various undetermined factors which in principle could be known but in fact
are not. A characteristic of a system 1s said to be random when it is not known
or cannot be predicted with complete certainty.

The degree of randomness can be quantified with the concept of probability.
The mathematical theory of probability has a history dating back at least to the
17th century, and several different definitions of probability have been developed.
We will use the definition in terms of set theory as formulated in 1933 by Kol-
mogorov [Kol33]. Consider a set S called the sample space consisting of a certain
number of elements, the interpretation of which is left open for the moment. To
each subset, A of S one assigns a real number P(A) called a probability, defined

by the following three axioms:!

(1) For every subset A in S, P(A) > 0.

(2) For any two subsets A and B that are disjoint (i.e. mutually exclusive,
AN B = ) the probability assigned to the union of 4 and B is the sum of
the two corresponding probabilities, P(AU B) = P(A) + P(B).

(3) The probability assigned to the sample space is one, P(S) = 1.

From these axioms further properties of probability functions can be derived,

e.g.

"The axioms here are somewhat simplified with respect to those found in more rigorous
texts, such as [Gri92], but are sufficient for our purposes. More precisely, the set of subsets to
which probabilities are assigned must constitute a so-called o-field.
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(A) =1 — P(A) where A is the complement of A
(AU A) =1
P(A 1

T2 U
IA

<P
P@) =0 -0
if A C B, then P(A) < P(B)

P(AUB) = P(A)+ P(B)— P(ANB).

For proofs and further properties see e.g. [Bra92, Gri&6, Gri92].

A variable that takes on a specific value for each element of the set S 1s called
arandom variable. The individual elements may each be characterized by several
quantities, in which case the random variable is a multicomponent vector.

Suppose one has a sample space S which contains subsets A and B. Provided
P(B) # 0, one defines the conditional probability P(A|B) (read P of A given
B) as

P(AN B)

PAIR) = =5 (1.2)

Figure 1.1 shows the relationship between the sets A, B and S. One can easily
show that conditional probabilities themselves satisfy the axioms of probabil-
ity. Note that the usual probability P(A) can be regarded as the conditional
probability for A given S: P(A) = P(A|S).

AnB

i

Fig. 1.1 Relationship between the
sets A, B and S in the definition of
conditional probability.

Two subsets A and B are said to be independent if

P(AN B) = P(A) P(B). (1.3)

For A and B independent,, 1t follows from the definition of conditional probability
that P(A|B) = P(A) and P(B|A) = P(B). (Do not confuse independent subsets
according to (1.3) with disjoint subsets, i.e. AN B = {.)

From the definition of conditional probability one also has the probability of
B given A (assuming P(A) # 0),

P(B N A)

P(BIA) = =5 (1.4)
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Since AN B is the same as BN A, by combining equations (1.2) and (1.4) one
has

P(BnN A) = P(A|B) P(B) = P(B|A) P(A), (1.5)
piarm) = SO (1.6)

Equation (1.6), which relates the conditional probabilities P(A|B) and P(B|A),
is called Bayes’ theorem [Bay63].

Suppose the sample space S can be broken into disjoint subsets A;, i.e. S =
U;A; with A; N A; = 0 for ¢ # j. Assume further that P(A;) # 0 for all i. An
arbitrary subset B can be expressed as B = BNS = BN (U;4;) = U; (BN A;).
Since the subsets B N A; are disjoint, their probabilities add, giving

P(B)

P(Ui(BN A;)) =3 P(BNA;)

)

Y P(BIA)P(A). (1.7)

)

The last line comes from the definition (1.4) for the case A = A;. Equation (1.7)
is called the law of total probability. Tt is useful, for example, if one can break
the sample space into subsets A; for which the probabilities are easy to calculate.
Tt is often combined with Bayes’ theorem (1.6) to give

_ P(BIA) P(A)
PAIR) = BBy Pl

Here A can be any subset of S, including, for example, one of the A;.

(1.8)

As an example, consider a disease which is known to be carried by 0.1% of
the population, i.e. the prior probabilities to have the disease or not are

P(disease) = 0.001,
P(no disease) = 0.999.

A test is developed which yields a positive result with a probability of 98% given
that the person carries the disease, i.e.

P(+]|disease) = 0.98,
P(—|disease) = 0.02.

Suppose there is also a 3% probability, however, to obtain a positive result for a
person without the disease,
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P(+|no disease) = 0.03,
P(—|no disease) = 0.97.

What is the probability that you have the disease if your test result is positive?
According to Bayes’ theorem (in the form of equation (1.8)) this is given by

P(+]|disease) P(disease)
P(+]|disease) P(disease) + P(+4|no disease) P(no disease)

P(disease|+)

0.98 x 0.001
0.98 x 0.001 + 0.03 x 0.999

0.032.

The probability that you have the disease given a positive test result is only
3.2%. This may be surprising, since the probability of having a wrong result is
only 2% if you carry the disease and 3% if you do not. But the prior probability is
very low, 0.1%, which leads to a posterior probability of only 3.2%. An important,
point, that. we have skipped over is what it means when we say P(disease|+) =
0.032, 1.e. how exactly the probability should be interpreted. This question is
examined in the next section.

1.2 Interpretation of probability

Although any function satisfying the axioms above can be called by definition
a probability function, one must still specify how to interpret the elements of
the sample space and how to assign and interpret the probability values. There
are two main interpretations of probability commonly used in data analysis.
The most important is that of relative frequency, used among other things for
assigning statistical errors to measurements. Another interpretation called sub-
Jective probability is also used, e.g. to quantify systematic uncertainties. These
two interpretations are described in more detail below.

1.2.1 Probability as a relative frequency

In data analysis, probability is most commonly interpreted as a limiting relative
frequency. Here the elements of the set S correspond to the possible outcomes of
a measurement, assumed to be (at least hypothetically) repeatable. A subset A
of S corresponds to the occurrence of any of the outcomes in the subset. Such a
subset is called an event, which is said to occur if the outcome of a measurement,
is in the subset.

A subset of S consisting of only one element denotes a single elementary
outcome. One assigns for the probability of an elementary outcome A the fraction
of times that A occurs in the limit that the measurement is repeated an infinite
number of times:
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. number of occurrences of outcome A in n measurements
P(A) = lim - (1.9)

n—00 n

The probabilities for the occurrence of any one of several outcomes (i.e. for a
non-elementary subset A) are determined from those for individual outcomes by
the addition rule given in the axioms of probability. These correspond in turn to
relative frequencies of occurrence.

The relative frequency interpretation is consistent with the axioms of prob-
ability, since the fraction of occurrences 1s always greater than or equal to zero,
the frequency of any out of a disjoint set of outcomes is the sum of the indi-
vidual frequencies, and the measurement must by definition yield some outcome
(i.e. P(S) = 1). The conditional probability P(A|B) is thus the number of cases
where both A and B occur divided by the number of cases in which B occurs,
regardless of whether A occurs. That is, P(A|B) gives the frequency of A with
the subset B taken as the sample space.

Clearly the probabilities based on such a model can never be determined
experimentally with perfect precision. The basic tasks of classical statistics are
to estimate the probabilities (assumed to have some definite but unknown values)
given a finite amount of experimental data, and to test to what extent a particular
model or theory that predicts probabilities is compatible with the observed data.

The relative frequency interpretation is straightforward when studying phys-
ical laws, which are assumed to act the same way in repeated experiments. The
validity of the assigned probability values can be experimentally tested. This
point of view is appropriate, for example, in particle physics, where repeated
collisions of particles constitute repetitions of an experiment. The concept of
relative frequency i1s more problematic for unique phenomena such as the big
bang. Here one can attempt to rescue the frequency interpretation by imagining
a large number of similar universes, in some fraction of which a certain event
occurs. Since, however, this is not even in principle realizable, the frequency here
must be considered as a mental construct to assist in expressing a degree of belief
about the single universe in which we live.

The frequency interpretation is the approach usually taken in standard texts
on probability and stafistics, such as those of Fisher [Fis90], Stuart and Ord
[Stu91] and Cramér [Cra46]. The philosophy of probability as a frequency is
discussed in the hooks by von Mises [Mis51, Mis64].

1.2.2 Subjective probability

Another probability interpretation is that of subjective (also called Bayesian)
probability. Here the elements of the sample space correspond to hypotheses or
propositions, i.e. statements that are either true or false. (When using subjective
probability the sample space is often called the hypothesis space.) One interprets
the probability associated with a hypothesis as a measure of degree of belief:

P(A) = degree of belief that hypothesis A is true. (1.10)
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The sample space .S must be constructed such that the elementary hypotheses
are mutually exclusive, 1.e. only one of them is true. A subset consisting of
more than one hypothesis is true if any of the hypotheses in the subset is true.
That is, the union of sets corresponds to the Boolean or operation and the
intersection corresponds to AND. One of the hypotheses must necessarily be true,
ie. P(S)=1.

The statement that a measurement will yield a given outcome a certain frac-
tion of the time can be regarded as a hypothesis, so the framework of subjective
probability includes the relative frequency interpretation. In addition, however,
subjective probability can be associated with, for example, the value of an un-
known constant; this reflects one’s confidence that its value lies in a certain fixed
interval. A probability for an unknown constant is not meaningful with the fre-
quency interpretation, since if we repeat an experiment depending on a physical
parameter whose exact value is not certain (e.g. the mass of the electron), then
its value is either never or always in a given fixed interval. The correspond-
ing probability would be either zero or one, but we do not know which. With
subjective probability, however, a probability of 95% that the electron mass is
contained in a given interval is a reflection of one’s state of knowledge.

The use of subjective probability is closely related to Bayes’ theorem and
forms the basis of Bayesian (as opposed to classical) statistics. The subset. A
appearing in Bayes’ theorem (equation (1.6)) can be interpreted as the hypothesis
that a certain theory is true, and the subset B can be the hypothesis that an
experiment will yield a particular result (i.e. data). Bayes’ theorem then takes
on the form

P(theory|data) o< P(data|theory) - P(theory).

Here P(theory) represents the prior probability that the theory is true, and
P(dataltheory), called the likelihood, is the probability, under the assumption
of the theory, to observe the data which were actually obtained. The posterior
probability that the theory is correct after seeing the result of the experiment, is
then given by P(theory|data). Here the prior probability for the data P(data)
does not appear explicitly, and the equation is expressed as a proportionality.
Bayesian statistics provides no fundamental rule for assigning the prior proba-
bility to a theory, but once this has been done, it says how one’s degree of belief
should change in the light of experimental data.

Consider again the probability to have a disease given a positive test result.
From the standpoint of someone studying a large number of potential carriers
of the disease, the probabilities in this problem can be interpreted as relative
frequencies. The prior probability P(disease) is the overall fraction of people who
carry the disease, and the posterior probability P(disease|+) gives the fraction of
people who are carriers out of those with a positive test result. A central problem
of classical statistics is to estimate the probabilities that are assumed to describe
the population as a whole by examining a finite sample of data, i.e. a subsample
of the population.
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A specific individual, however, may be interested in the subjective probability
that he or she has the disease given a positive test result. Tf no other informa-
tion is available, one would usually take the prior probability P(disease) to be
equal to the overall fraction of carriers, 1.e. the same as in the relative frequency
interpretation. Here, however, it is taken to mean the degree of belief that one
has the disease before taking the test. If other information is available, different
prior probabilities could be assigned; this aspect of Bayesian statistics is nec-
essarily subjective, as the name of the probability interpretation implies. Once
P(disease) has been assigned, however, Bayes’ theorem then tells how the prob-
ability to have the disease, i.e. the degree of belief in this hypothesis, changes in
light of a positive test result.

The use of subjective probability is discussed further in Sections 6.13, 9.8
and 11.5.3. There exists a vast literature on subjective probability; of particular
interest are the hooks by Jeffreys [Jefd8], Savage [Sav72], de Finetti [Fin74] and
the paper by Cox [Cox46]. Applications of Bayesian methods are discussed in
the books by Lindley [Lin65], O’hagan [Oha94], Lee [Lee89] and Sivia [Siv96].

1.3 Probability density functions

Consider an experiment whose outcome is characterized by a single continuous
variable . The sample space corresponds to the set of possible values that =
can assume, and one can ask for the probability of observing a value within an
infinitesimal interval [z, 2 4+dz].2 This is given by the probability density function

(p-d.f) flx):

probability to observe 2 in the interval [z, 2 + da] = f(2)dx. (1.11)

Tn the relative frequency interpretation, f(a)dz gives the fraction of times that
r is observed in the interval [,z 4+ dz] in the limit that the total number of
observations is infinitely large. The p.d.f. f(x) is normalized such that the total
probability (probability of some outcome) is one,

/;.f(m)dm:L (1.12)

where the region of integration S refers to the entire range of 2, i.e. to the entire
sample space.

Although finite data samples will be dealt with more thoroughly in Chapter
5, it is illustrative here to point out the relationship between a p.d.f. f(z) and a
set of n observations of #, x4, ... x,. A set of such observations can be displayed
graphically as a histogram as shown in Fig. 1.2. The z axis of the histogram is

2A possible confusion can arise from the notation used here, since z refers both to the
random variable and also to a value that can be assumed by the variable. Many authors use
upper case for the random variable, and lower case for the value, i.e. one speaks of X taking on
a value in the interval [z, 7 + dz]. This notation is avoided here for simplicity; the distinction
between variables and their values should be clear from context.
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divided into m subintervals or bins of width Ax;, i = 1,...,m, where Ax; is
usually but not necessarily the same for each bin. The number of occurrences
n; of x# in subinterval i, i.e. the number of entries in the bin, is given on the
vertical axis. The area under the histogram is equal to the total number of
entries n multiplied by Az (or for unequal bin widths, area = .77, n; - Ax;).
Thus the histogram can be normalized to unit area by dividing each n; by the
corresponding bin width Az, and by the total number of entries in the histogram
n. The p.d.f. f(2) corresponds to a histogram of 2 normalized to unit area in
the limit of zero bin width and an infinitely large total number of entries, as
illustrated in Fig. 1.2(d).
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Fig. 1.2 Histograms of various numbers of observations of a random variable x based on the
same p.d.f. (a) n = 100 observations and a bin width of Az = 0.5. (b) n = 1000 observations,
Ar = 0.2. (¢) n = 10000 observations, Az = 0.1. (d) The same histogram as in (c), but
normalized to unit area. Also shown as a smooth curve is the p.d.f. according to which the
observations are distributed. For (a c¢), the vertical axis N(z) gives the number of entries in a
bin containing x. For (d), the vertical axis is f(x) = N(x)/(nA=z).

One can consider cases where the variable x only takes on discrete values z;,
for i =1,..., N, where N can be infinite. The corresponding probabilities can
be expressed as
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Fig. 1.3 (a) A probability density function f(x). (b) The corresponding cumulative distri-
bution function F(x).

probability to observe value 2; = P(2;) = f;, (1.13)
where 1 = 1,..., N and the normalization condition is
N
k=1 (1.14)
i=1

Although most of the examples in the following are done with continuous vari-
ables, the transformation to the discrete case is a straightforward correspondence
between integrals and sums.

The enmulative distribution F(z) is related to the p.d.f. f(2) by

Py = [ s (1.15)

i.e. F'(x) is the probability for the random variable to take on a value less than or
equal to z.% Tn fact, F(x) is usually defined as the probability to obtain an out-
come less than or equal to 2, and the p.d.f. f(2) is then defined as F/dx. For
the ‘well-behaved’ distributions (i.e. F(x) everywhere differentiable) typically
encountered in data analysis, the two approaches are equivalent. Figure 1.3 1llus-
trates the relationship between the probability density f(2) and the cumulative
distribution F(x).

For a discrete random variable x; with probabilities P(2;) the cumulative
distribution is defined to be the probability to observe values less than or equal
to the value =,

3Mathematicians call F(x) the ‘distribution’ function, while physicists often use the word
distribution to refer to the probability density function. To avoid confusion we will use the
terms cumulative distribution and probability density (or p.d.f.).
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Fe)=Y_ P(w). (1.16)

A useful concept related to the cumulative distribution is the so-called quan-

tile of order @ or ax-point. The quantile x,, is defined as the value of the random

variable  such that F(z,) = «, with 0 < a < 1. That is, the quantile is simply
the inverse function of the cumulative distribution,

o =F'(a). (1.17)

A commonly used special case is xq/4, called the median of . This is often used
as a measure of the typical ‘location’ of the random variable, in the sense that
there are equal probabilities for z to be observed greater or less than x; /5.

Another commonly used measure of location 1s the mode, which 1s defined
as the value of the random variable at which the p.d.f. is a maximum. A p.d.f.
may, of course, have local maxima. By far the most commonly used location
parameter is the expectation value, which will be introduced in Section 1.5.

Consider now the case where the result of a measurement is characterized not
by one but by several quantities, which may be regarded as a multidimensional
random vector. If one is studying people, for example, one might measure for each
person their height, weight, age, etc. Suppose a measurement is characterized by
two continuous random variables x and y. Tet the event A be ‘@ observed in
[x, z+ dr] and y observed anywhere’, and let B be ‘y observed in [y, y + dy] and
x observed anywhere’, as indicated in Fig. 1.4.

10
y event A
8 | -
6 -
Fig. 1.4 A scatter plot of two ran-
K .
; i dom variables » and y based on 1000
4 event B . e
observations. The probability for a
point to be observed in the square
2 - given by the intersection of the two
bands (the event A N B) is given by
the joint p.d.f. times the area element,
0 l : : r,y)drdy.
0 2 4 6 8 10 Ay)dedy

The joint p.d.f. f(x,y) is defined by

P(AN B) = probability of 2 in [2,2 4+ d2] and y in [y, y + dy]
f(x,y)dedy. (1.18)
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The joint p.d.f. f(2,y) thus corresponds to the density of points on a scatter
plot of z and y in the limit of infinitely many points. Since x and y must take
on some values, one has the normalization condition

//q [z, y)dedy = 1. (1.19)

Suppose a joint p.d.f. f(z,y) is known, and one would like to have the p.d.f.
for x regardless of the value of y, i.e. corresponding to event A in Fig. 1.4. If one
regards the ‘event A’ column as consisting of squares of area dx dy, each labeled
by an index i, then the probability for A is obtained simply by summing the
probabilities corresponding to the individual squares,

P(A) = Z f(x,y)dyde = fo(z)dz. (1.20)

The corresponding probability density, called the marginal p.d.f. for z, is then
given by the function f, (). Tn the limit of infinitesimal dy, the sum becomes an
integral, so that the marginal and joint p.d.f.s are related by

= [ ey, (1.21)

Similarly, one obtains the marginal p.d.f. f,(y) by integrating f(z,y) over x,

f = [ " fa e (1.22)

The marginal p.d.f.s f,. () and f, (y) correspond to the normalized histograms
obtained by projecting a scatter plot of # and y onto the respective axes. The
relationship between the marginal and joint p.d.f.s 1s illustrated in Fig. 1.5.

From the definition of conditional probability (1.2), the probability for y to
be in [y, y + dy] with any 2 (event. B) given that x is in [z, 2 + dz] with any y
(event A) is

P(B|A) = P(;\(T\)B) - f(;r(?)ddrrdy (1.23)

The conditional p.d.f. for y given z, h(y|x), is thus defined as

h(yl) = fley)  flz,y) (1.24)

C fe(x) [ f(ry)dy

This is a p.d.f. of the single random variable y; x is treated as a constant pa-

rameter. Starting from f(x,y), one can simply think of holding 2 constant, and
then renormalizing the function such that its area is unity when integrated over
y alone.

The conditional p.d.f. h(y|z) corresponds to the normalized histogram of y
obtained from the projection onto the y axis of a thin band in 2 (i.e. with in-
finitesimal width da) from an (2, y) scatter plot. This is illustrated in Fig. 1.6 for
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Fig. 1.5 (a) The density of points on the scatter plot is given by the joint p.d.f. f(=,y).
b) Normalized histogram from projecting the points onto the y axis with the correspondin
( g proj g the p y p g
marginal p.d.f. f,(y). (c¢) Projection onto the = axis giving fz (7).

two values of 2, leading to two different conditional p.d.f.s, h(y|z1) and h(y|zs).
Note that h(y|z;) and h(y|zs) in Fig. 1.6(b) are both normalized to unit area,
as required by the definition of a probability density.

Similarly, the conditional p.d.f. for x given y is

f(x,y) f(=,y)

W =T T T e

(1.25)

Combining equations (1.24) and (1.25) gives the relationship between g(2|y) and
h(y|z),

g(ely) = %

(1.26)
which is Bayes’ theorem for the case of continuous variables (cf. equation (1.6)).

By using f(x,y) = h(ylz) f=(x) = g(=|y) fy(y), one can express the marginal
p.d.fis as
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h(ylX)

@)

8 10 0 2 4 6 8 10

Fig. 1.6 (a) A scatter plot of random variables = and y indicating two infinitesimal bands
in z of width dz at z; (solid band) and z2 (dashed band). (b) The conditional p.d.f.s h(y|z1)

and h(y|z2) corresponding to the projections of the bands onto the y axis.

folr) = /m a(#19) () ly, (1.27)
L) = /m h(yla) £y () (1.28)

These correspond to the law of total probability given by equation (1.7), gener-
alized to the case of continuous random variables.

Tf ‘x in [z, 2+ dz] with any 3’ (event A) and ‘y in [y+ dy] with any 2’ (event,
B) are independent, i.e. P(AN B) = P(A) P(B), then the corresponding joint
p.d.f. for  and y factorizes:

f(ey) = Fo () fy(y)- (1.29)

From equations (1.24) and (1.25), one sees that for independent random variables
x and y the conditional p.d.f. g(z|y) is the same for all y, and similarly h(y|z)
does not depend on 2. In other words, having knowledge of one of the variables
does not change the probabilities for the other. The variables x and y shown in
Fig. 1.6, for example, are not independent, as can be seen from the fact that
h(y|) depends on x.

1.4 Functions of random variables

Functions of random variables are themselves random variables. Suppose a(x) is
a continuous function of a continuous random variable z, where » is distributed
according to the p.d.f. f(2). What is the p.d.f. g(a) that describes the distribution
of a? This is determined by requiring that the probability for # to occur between
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Fig. 1.7 Transformation of variables for (a) a function a(x) with a single-valued inverse x(a)
and (b) a function for which the interval da corresponds to two intervals dzy and drs.

x and x 4+ dx be equal to the probability for a to be between a and a + da. That

18,

sa)da' = | fa)an, (1.30)

where the integral is carried out over the infinitesimal element dS defined by the
region in z-space between a(2) = a’ and a(x) = o’ 4+ da’, as shown in Fig. 1.7(a).
Tf the function a(2) can be inverted to obtain z(a), equation (1.30) gives

T(ﬂ)+|g—;|(‘lﬂ
= / F(x")dx', (1.31)

z(a+da)
"(“””_./r(a) | = [
dx
o) = Flata)) [ 2. (1.32)

The absolute value of dz/da ensures that the integral is positive. If the function
a(x) does not have a unique inverse, one must include in dS contributions from all
regions in z-space between a(z) = a’ and a(x) = o’ +da’, as shown in Fig. 1.7(h).

The p.d.f. g(a) of a function a(z4,...,x,) of n random variables ay,... 2,
with the joint p.d.f. f(zq1,...,2,) is determined by
gla')da' = / flo, o wp)dey oo day,, (1.33)
. Jds
where the infinitesimal volume element dS is the region in x4, ..., z,-space be-
tween the two (hyper)surfaces defined by a(zy,...,2,) =a’ and a(zq,...,2,) =

a + da’.
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0 0 1 5 3 4 5 corresponding interval [z, z 4+ dz].

As an example, consider two independent random variables, » and y, dis-
tributed according to g(2) and h(y), and suppose we would like to find the p.d.f.
of their product z = zy. Since # and y are assumed to be independent, their
joint p.d.f. is given by g(2)h(y). Equation (1.33) then gives for the p.d.f. of z,

f(z),

revte= [ [ sty = [ gtorar | a0

J oo 2/z|

where dS 1s given by the region between zy = z and xy = z + dz, as shown in
Fig. 1.8. This yields

f(2)

o0 |z

[ b P (135)

o lyl’

where the second equivalent expression is obtained by reversing the order of
integration. Equation (1.35) is often written f = ¢ ® h, and the function f is
called the Mellin convolution of g and h.

Similarly, the p.d.f. f(z) of the sum z = 2 + y is found to he

e = 7 g@)h(z — a)da

=00

= /m 9(z — y)h(y)dy. (1.36)

=00

Equation (1.36) is also often written f = ¢ @ h, and f is called the Fourier
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convolution of ¢ and h. Tn the literature the names Fourier and Mellin are often
dropped and one must infer from context what kind of convolution is meant.

Starting from n random variables, x = (21, ..., #,), the following technique
can be used to determine the joint p.d.f. of n linearly independent functions
a;(x), with i = 1,... n. Assuming the functions ay,...,a, can be inverted to
give x;(ay, ..., a,), i =1,...,n, the joint p.d.f. for the a; is given by

.(]((],]7...7(],“,):f(.’lf]7...7.’lfn)|e]|7 (137)
where |.J| is the absolute value of the Jacobian determinant for the transforma-
tion,

RER RER RER
Daq Has o Da.,
Aro Aro Aro
Daq Has o Da.,
J = . . : (1.38)
OTp
Dy,

To determine the marginal p.d.f. for one of the functions (say gi(a1)) the joint
p.d.f. g(ayr, ..., a,) must be integrated over the remaining a;.

In many cases the techniques given above are too difficult to solve analytically.
For example, if one is interested in a single function of n random variables, where
n 18 some large and itself possibly variable number, it is rarely practical to come
up with n— 1 additional functions and then integrate the transformed joint p.d.f.
over the unwanted ones. In such cases a numerical solution can usually be found
using the Monte Carlo techniques discussed in Chapter 3. If only the mean and
variance of a function are needed, the so-called ‘error propagation’ procedures
described in Section 1.6 can be applied.

For certain cases the p.d.f. of a function of random variables can be found
using integral transform techniques, specifically, Fourier transforms of the p.d.f.s
for sums of random variables and Mellin transforms for products. The basic
idea is to take the Mellin or Fourier transform of equation (1.35) or (1.36),
respectively. The equation f = g ® h is then converted into the product of the
transformed density functions, f = § - h. The p.d.f. f is obtained by finding the
inverse transform of f A complete discussion of these methods is beyond the
scope of this book; see e.g. [Spr79]. Some examples of sums of random variables
using Fourier transforms (characteristic functions) are given in Chapter 10.

1.5 Expectation values

The expectation value F[z] of a random variable z distributed according to the

p.d.f. f(2) is defined as

Pl = [ afidr = (1.39)
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The expectation value of 2 (also called the population mean or simply the mean
of x) is often denoted by p. Note that F[z] is not a function of 2, but depends
rather on the form of the p.d.f. f(x). Tf the p.d.f. f(2) is concentrated mostly in
one region, then E[z] represents a measure of where values of = are likely to be
observed. Tt can be, however, that f(2) consists of two widely separated peaks,
such that E[z] is in the middle where 2 is seldom (or never) observed.

For a function a(z), the expectation value is

Ela) = / ag(a)da = / a(z)f(x)de, (1.40)
where g(a) is the p.d.f. of a and f(z) is the p.d.f. of z. The second integral is
equivalent; this can be seen by multiplying both sides of equation (1.30) by a
and integrating over the entire space.

Some more expectation values of interest are:

Pl = [ o (e = 4, (1.41)

called the nth algebraic moment of x, for which u = p} is a special case, and

Pl P = [ o= )" )i = o (1.42)

=00

called the nth central moment of x. In particular, the second central moment,

Flle— P = [ (= ) fa)de = 0 = VIal, (1.43)

J—o0

is called the population variance (or simply the variance) of x, written ¢? or

V[z]. Note that E[(x — E[z])?] = F[2?] — u?. The variance is a measure of how
widely x is spread about its mean value. The square root of the variance o is
called the standard deviation of x, which is often useful because it has the same
units as z.

For the case of a function @ of more than one random variablex = (21,.. ., 2,),
the expectation value is

Ela(x)] = /OO ag(a)da

/i B /: a(x)f(x)dzy .. .den = pa, (1.44)

where g(a) is the p.d.f. for a and f(x) is the joint p.d.f. for the 2;;. Tn the following,
the notation p, = E[a] will often be used. As in the single-variable case, the two
integrals in (1.44) are equivalent, as can be seen by multiplying both sides of
equation (1.33) by @ and integrating over the entire space. The variance of a is
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Vial = Fl(a—pa)’]

/ / o)’ f(x)dxy . d, = o), (1.45)

and is denoted by ¢2 or V]a]. The covariance of two random variables = and y
is defined as

Voy = Fl(x — pa)(y — Nu)] = Flzy] — Ha Hy

/ / ry f(z,y)dedy — pepy, (1.46)

where yi, = Flz] and p, = F[y]. The covariance matrix V,,, also called the error
matrix, is sometimes denoted by cov[r,y]. More generally, for two functions a

and b of n random variables x = (21,..., 2,), the covariance cov[a, b] is given by
coxlatl = Flla— pa)(b— u)]
= Flab] — prap

/ / abg(a,bydadb — p,pp

_ / / ) F(x)das o dan — gy, (1.47)

where g(a,b) is the joint p.d.f. for @ and b and f(x) is the joint p.d.f. for the z;.
As in equation (1.44), the two integral expressions for V; are equivalent. Note
that by construction the covariance matrix V,; is symmetric in a and b and that
the diagonal elements V,, = 0'3 (i.e. the variances) are positive.

In order to give a dimensionless measure of the level of correlation between
two random variables # and y, one often uses the correlation coefficient, defined

by

V’ny

Tp0y

oy = (1.43)
One can show (see e.g. [Fro79, Bra92]) that the correlation coefficient lies in the
range —1 < ppy < 1.

One can roughly understand the covariance of two random variables & and
y in the following way. Vg, is the expectation value of (# — ps)(y — py), the
product of the deviations of 2 and y from their means, y, and p,,. Suppose that
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Fig. 1.9 Scatter plots of random variables 2z and y with (a) a positive correlation, p = 0.75,
(b) a negative correlation, p = —0.75, (c¢) p = 0.95, and (d) p = 0.25. For all four cases the
standard deviations of ©z and y are 0, = 0y = 1.

having x greater than p, enhances the probability to find y greater than y,,, and
x less than p, gives an enhanced probability to have y less than yg,. Then V,
is greater than zero, and the variables are said to be positively correlated. Such
a situation is illustrated in Figs 1.9 (a), (¢) and (d), for which the correlation
coefficients pg,, are 0.75, 0.95 and (.25, respectively. Similarly, V,, < 0 is called a
negative correlation: having @ > pu, increases the probability to observe y < p,,.
An example is shown in Fig. 1.9(h), for which p,, = —0.75.

From equations (1.29) and (1.44), it follows that for independent random
variables » and y,

Elzyl = Ele]Ely] = popy, (1.49)

(and hence by equation (1.46), V,, = 0) although the converse is not necessarily
true. Figure 1.10, for example, shows a two-dimensional scatter plot of a p.d.f.
for which V,,, = 0, but where # and y are not. independent. That is, f(x,y) does
not factorize according to equation (1.29), and hence knowledge of one of the
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10 _
y B
8 | .
6 |- -
4 b i
Fig. 1.10 Scatter plot of random
2 F B variables z and y which are not inde-
pendent (i.e. f(z,y) # f=(7) fy(y)) but
for which Vi, = 0 because of the par-
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0 2 4 6 8 10 leniar symmetry of the distribution.
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variables affects the conditional p.d.f. of the other. The covariance V,,, vanishes,
however, because f(x,y) is symmetric in 2 about the mean p,,.

1.6 Error propagation

Suppose one has a set, of n random variables x = (21, ..., 2,,) distributed accord-
ing to some joint p.d.f. f(x). Suppose that the p.d.f. is not completely known,
but the mean values of the #;, po = (g1, .., un), and the covariance matrix, Vi;,
are known or have at least been estimated. (Methods for doing this are described
in Chapter 5.)

Now consider a function of the n variables y(x). To determine the p.d.f. for
y, one must in principle follow a procedure such as those described in Section
1.4 (e.g. equations (1.33) or (1.37)). We have assumed, however, that f(x) is not
completely known, only the means p and the covariance matrix Vj;, so this is
not possible. One can, however, approximate the expectation value of y and the
variance V[y| by first expanding the function y(x) to first order about the mean
values of the z;,

y(x) = y(p)+ [ﬁr] (i) (1.50)

Ely(x)] = y(u), (1.51)

since Bz; — w;] = 0. The expectation value of y? is
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v ( B m)) ]
L _ g — T 3T7 _ J
i=1 x=p =1 x=p
— [y Oy
— 2 : .
= Y ] (152
ij=1 x=p
so that the variance o = E[y’] — (F[y])” is given by
~ [dy dy
2 Yy 01
~ — Visi. 1.53
i,j=1 JAX=p
Similarly, one obtains for a set of m functions y1(x), ..., ym(x) the covariance
matrix
= [y du
U =c o — Vii. 1.54
kil (’()V[yk, U/] pa |:3T7 3T7 _ .7 ( )
i,j=1 S AX=H
This can be expressed in matrix notation as
U=AV AT, (1.55)
where the matrix of derivatives A 1s
Jyi
A= | =22 1.56
= (1:56)

and AT is the transpose of A. Equations (1.53) (1.56) form the basis of error
propagation (i.e. the variances, which are used as measures of statistical uncer-
tainties, are propagated from the z; to the functions yi, y2, etc.). (The term
‘error’ will often be used to refer to the uncertainty of a measurement, which
in most cases is given by the standard deviation of the corresponding random
variable.)

For the case where the x; are not correlated, 1.e. V;; = 0'7? and Vj; = 0 for
i # j, equations (1.53) and (1.54) become

n 31/ 2
2 . ! 2
ol R ; [ﬁr] o (1.57)

xX=p

and
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kel

Jyr O
Ut & Z [ﬁm; 3.777':| 7 (1.58)
; 4 A x=p

=1

Equation (1.53) leads to the following special cases. If y = 2y + x5, the
variance of y is then

05:0’12+0'§+2‘/12. (1.59)

For the product y = 2125 one obtains

0-2 2 2 V;
I R ) AL (1.60)
Y Ty T Tr1rg

Tf the variables 21 and 25 are not correlated (V15 = 0), the relations above state
that errors (i.e. standard deviations) add quadratically for the sum y = @1 4 24,
and that the relative errors add quadratically for the product y = zq24.

In deriving the error propagation formulas we have assumed that the means
and covariances of the original set of variables #1,... z, are known (or at least
estimated) and that the desired functions of these variables can he approximated
by the first-order Taylor expansion around the means pq, ..., u,. The latter
assumption is of course only exact for a linear function. The approximation
breaks down if the function y(x) (or functions y(x)) are significantly nonlinear
in a region around the means p of a size comparable to the standard deviations
of the #;, oq, ..., o,,. Care must be taken, for example, with functions like y(x) =
1/x when E[z] = p is comparable to or smaller than the standard deviation of z.
Such situations can be better treated with the Monte Carlo techniques described
in Chapter 3, or using confidence intervals as described in Section 9.2.

1.7 Orthogonal transformation of random variables

Suppose one has a set of n random variables x1,...,z, and their covariance
matrix V;; = cov[x;, 2;], for which the off-diagonal elements are not necessarily
zero. Often 1t can be useful to define n new variables y1,...,y, that are not
correlated, i.e. for which the new covariance matrix U;; = cov(y:, y;] is diagonal.
We will show that this is always possible with a linear transformation,

yi =y Aij;. (1.61)

7=1

Assuming such a transformation, the covariance matrix for the new variables is
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Ui,i = COV[,Uh.Uj] = cov [Z Aigre, Z Aﬂml‘|
k=1 =1

- Z AmAﬂ COV[»Tk,.T[]

K i=1
= Z Air Vil Al; (1.62)
K i=1

This is simply a special case of the error propagation formula (1.54); here it is
exact, since the function (1.61) is linear.

The problem thus consists of finding a matrix A such that 7 = AV AT is
diagonal. This is simply the diagonalization of a real, symmetric matrix, a well-
known problem of linear algebra (cf. [Arf95]). The solution can be found by first
determining the eigenvectors ', i = 1,... n, of the covariance matrix V. That
is, one must solve the equation

Vel =\ (1.63)

where in the matrix equations the vector r should be understood as a column
vector. The eigenvectors ¥* are only determined up to a multiplicative factor,
which can be chosen such that they all have unit length. Furthermore, one can
easily show that since the covariance matrix is symmetric, the eigenvectors are
orthogonal, i.e.

kel
vl = ZrLrIZ = 6;;. (1.64)

E=1
If two or more of the eigenvalues A;, A;, ... are equal, then the directions of
the corresponding eigenvectors r' v/, ... are not uniquely determined, but can

nevertheless be chosen such that the eigenvectors are orthogonal.
The n rows of the transformation matrix A are then given by the n eigen-

)

vectors ¥ (in any order), i.e. A;; = 7%, and the transpose matrix thus has the

eigenvectors as its columns, A;’; = rz That this matrix has the desired property
can be shown explicitly by substituting it into equation (1.62),

kel

Uij= > AuVinAl, = > riVir]

k=1 k=1

kel

_ iy
= § TEAG T

k=1
= Mr' v/

= Ajdij- (1.65)
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Thus the variances of the transformed variables y1, ..., y, are given by the
eigenvalues of the original covariance matrix V', and all off-diagonal elements of
U are zero. Since the eigenvectors are orthonormal (equation (1.64)), one has
the property

kel

Z AMAJTk = Zr;rl; =r r* =4, (1.66)

7=1 =1

or as a matrix equation AA”T =1, and hence AT = A7 Such a transformation
is said to be orthogonal, i.e. it corresponds to a rotation of the vector x into y
such that the norm remains constant, since |y|? = y7y = x7 AT Ax = |x|?.

In order to find the eigenvectors of V| the standard techniques of linear
algebra can used (see e.g. [Arf95]). For more than three variables, the problem
becomes impractical to solve analytically, and numerical techniques such as the
singular value decomposition are necessary (see e.g. [Bra92, Pre92]).

In two dimensions, for example, the covariance matrix for the variables x =
(21, 22) can be expressed as

0'12 po102
V= : (1.67)

2
po102 (o

The eigenvalue equation (V' — TA)r = 0 (where 7T is the 2 X 2 unit matrix) is
solved by requiring that the determinant of the matrix of coefficients be equal
to zero,

det(V — TA) = 0. (1.68)

The two eigenvalues Ay are found to be

e LR SRR IR ] R

The two orthonormal eigenvectors v+ can be parametrized by an angle 4,

cos f) —sinf
ry — r. = . 1.70
* sin f cosf) ( )

Substituting the eigenvalues (1.69) back into the eigenvalue equation determines

the angle 0,
B 2p0109
1

The rows of the desired transformation matrix are thus given by the two
eigenvectors,
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cosfl  sinf
A= . (1.72)

—sinfl cosf

This corresponds to a rotation of the vector (21, 23) by an angle #. An example
is shown in Fig. 1.11 where the original two variables have o1 = 1.5, 2 = 1.0,
and a correlation coefficient of p = 0.7.

R 6 < 6
4 : 4 :
2 1 2 1
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_2 - | _2 . 4
4T @ 4T ()
6 1 1 1 1 6 1 1 1 1

-6 4 -2 0 2 4 6 -6 4 -2 0 2 4 6
X Y1

Fig. 1.11 Scatter plot of (a) two correlated random variables (71, #2) and (b) the transformed
variables (y1,y2) for which the covariance matrix is diagonal.

Although uncorrelated variables are often easier to deal with, the transformed
variables may not have as direct an interpretation as the original ones. Exam-
ples where this procedure could be used will arise in Chapters 6 through 8 on
parameter estimation, where the estimators for a set of parameters will often be
correlated.
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Examples of probability
functions

In this chapter a number of commonly used probability distributions and density
functions are presented. Properties such as mean and variance are given, mostly
without proof; the moments can be found by using characteristic functions in-
troduced in Chapter 10. Additional p.d.f.s can be found in [Fro79] Chapter 4,
[Ead71] Chapter 4, [Bra92] Chapter 5.

2.1 Binomial and multinomial distributions

Consider a series of N independent trials or observations, each having two possi-
ble outcomes, here called ‘success’ and ‘failure’, where the probability for success
s some constant value, p. The set of trials can be regarded as a single measure-
ment and is characterized by a discrete random variable n, defined to be the total
number of successes. That is, the sample space is defined to be the set of possi-
ble values of n successes given N observations. If one were to repeat the entire
experiment many times with N trials each time, the resulting values of n would
occur with relative frequencies given by the so-called binomial distribution.

The form of the binomial distribution can be derived in the following way.
We have assumed that the probability of success in a single observation 1s p and
the probability of failure is 1 — p. Since the individual trials are assumed to be
independent,, the probability for a series of successes and failures in a particular
order is equal to the product of the individual probabilities. For example, the
probability in five trials to have success, success, failure, success, failure in that
orderis p-p-(1—p)-p-(1 —p) = p*(1 — p)?. In general the probability for a
particular sequence of n successes and N — n failures is p”(1 — p)V=". We are
not interested in the order, however, only in the final number of successes n. The
number of sequences having n successes in N events is

N!
n(N —n)!’

(2.1)

so the total probability to have n successes in N events is

flni N.p) = MNL'n)'p (1-p"" (2.2)



