
1Fundamental concepts1.1 Probability and random variablesThe aim of this book is to present the most important concepts and methodsof statistical data analysis. A central concept is that of uncertainty, which canmanifest itself in a number of di�erent ways. For example, one is often facedwith a situation where the outcome of a measurement varies unpredictably uponrepetition of the experiment. Such behavior can result from errors related to themeasuring device, or it could be the consequence of a more fundamental (e.g.quantummechanical) unpredictability of the system. The uncertainty might stemfrom various undetermined factors which in principle could be known but in factare not. A characteristic of a system is said to be random when it is not knownor cannot be predicted with complete certainty.The degree of randomness can be quanti�ed with the concept of probability.The mathematical theory of probability has a history dating back at least to the17th century, and several di�erent de�nitions of probability have been developed.We will use the de�nition in terms of set theory as formulated in 1933 by Kol-mogorov [Kol33]. Consider a set S called the sample space consisting of a certainnumber of elements, the interpretation of which is left open for the moment. Toeach subset A of S one assigns a real number P (A) called a probability, de�nedby the following three axioms:1(1) For every subset A in S, P (A) � 0.(2) For any two subsets A and B that are disjoint (i.e. mutually exclusive,A \B = ;) the probability assigned to the union of A and B is the sum ofthe two corresponding probabilities, P (A [B) = P (A) + P (B).(3) The probability assigned to the sample space is one, P (S) = 1.From these axioms further properties of probability functions can be derived,e.g.1The axioms here are somewhat simpli�ed with respect to those found in more rigoroustexts, such as [Gri92], but are su�cient for our purposes. More precisely, the set of subsets towhich probabilities are assigned must constitute a so-called �-�eld.



2 Fundamental conceptsP (A) = 1� P (A) where A is the complement of AP (A [A) = 10 � P (A) � 1P (;) = 0if A � B; then P (A) � P (B)P (A [B) = P (A) + P (B)� P (A \B): (1.1)For proofs and further properties see e.g. [Bra92, Gri86, Gri92].A variable that takes on a speci�c value for each element of the set S is calleda random variable. The individual elements may each be characterized by severalquantities, in which case the random variable is a multicomponent vector.Suppose one has a sample space S which contains subsets A and B. ProvidedP (B) 6= 0, one de�nes the conditional probability P (AjB) (read P of A givenB) as P (AjB) = P (A \B)P (B) : (1.2)Figure 1.1 shows the relationship between the sets A, B and S. One can easilyshow that conditional probabilities themselves satisfy the axioms of probabil-ity. Note that the usual probability P (A) can be regarded as the conditionalprobability for A given S: P (A) = P (AjS).
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A ∩ B Fig. 1.1 Relationship between thesets A, B and S in the de�nition ofconditional probability.Two subsets A and B are said to be independent ifP (A \B) = P (A)P (B): (1.3)For A and B independent, it follows from the de�nition of conditional probabilitythat P (AjB) = P (A) and P (BjA) = P (B). (Do not confuse independent subsetsaccording to (1.3) with disjoint subsets, i.e. A \B = ;.)From the de�nition of conditional probability one also has the probability ofB given A (assuming P (A) 6= 0),P (BjA) = P (B \A)P (A) : (1.4)



Probability and random variables 3Since A \ B is the same as B \ A, by combining equations (1.2) and (1.4) onehas P (B \A) = P (AjB)P (B) = P (BjA)P (A); (1.5)or P (AjB) = P (BjA)P (A)P (B) : (1.6)Equation (1.6), which relates the conditional probabilities P (AjB) and P (BjA),is called Bayes' theorem [Bay63].Suppose the sample space S can be broken into disjoint subsets Ai, i.e. S =[iAi with Ai \ Aj = ; for i 6= j. Assume further that P (Ai) 6= 0 for all i. Anarbitrary subset B can be expressed as B = B \ S = B \ ([iAi) = [i(B \Ai).Since the subsets B \Ai are disjoint, their probabilities add, givingP (B) = P ([i(B \Ai)) =Xi P (B \Ai)= Xi P (BjAi)P (Ai): (1.7)The last line comes from the de�nition (1.4) for the case A = Ai. Equation (1.7)is called the law of total probability. It is useful, for example, if one can breakthe sample space into subsets Ai for which the probabilities are easy to calculate.It is often combined with Bayes' theorem (1.6) to giveP (AjB) = P (BjA)P (A)PiP (BjAi)P (Ai) : (1.8)Here A can be any subset of S, including, for example, one of the Ai.As an example, consider a disease which is known to be carried by 0:1% ofthe population, i.e. the prior probabilities to have the disease or not areP (disease) = 0:001;P (no disease) = 0:999:A test is developed which yields a positive result with a probability of 98% giventhat the person carries the disease, i.e.P (+jdisease) = 0:98;P (�jdisease) = 0:02:Suppose there is also a 3% probability, however, to obtain a positive result for aperson without the disease,



4 Fundamental concepts P (+jno disease) = 0:03;P (�jno disease) = 0:97:What is the probability that you have the disease if your test result is positive?According to Bayes' theorem (in the form of equation (1.8)) this is given byP (diseasej+) = P (+jdisease)P (disease)P (+jdisease)P (disease) + P (+jno disease)P (no disease)= 0:98� 0:0010:98� 0:001+ 0:03� 0:999= 0:032:The probability that you have the disease given a positive test result is only3:2%. This may be surprising, since the probability of having a wrong result isonly 2% if you carry the disease and 3% if you do not. But the prior probability isvery low, 0:1%, which leads to a posterior probability of only 3:2%. An importantpoint that we have skipped over is what it means when we say P (diseasej+) =0:032, i.e. how exactly the probability should be interpreted. This question isexamined in the next section.1.2 Interpretation of probabilityAlthough any function satisfying the axioms above can be called by de�nitiona probability function, one must still specify how to interpret the elements ofthe sample space and how to assign and interpret the probability values. Thereare two main interpretations of probability commonly used in data analysis.The most important is that of relative frequency, used among other things forassigning statistical errors to measurements. Another interpretation called sub-jective probability is also used, e.g. to quantify systematic uncertainties. Thesetwo interpretations are described in more detail below.1.2.1 Probability as a relative frequencyIn data analysis, probability is most commonly interpreted as a limiting relativefrequency. Here the elements of the set S correspond to the possible outcomes ofa measurement, assumed to be (at least hypothetically) repeatable. A subset Aof S corresponds to the occurrence of any of the outcomes in the subset. Such asubset is called an event, which is said to occur if the outcome of a measurementis in the subset.A subset of S consisting of only one element denotes a single elementaryoutcome. One assigns for the probability of an elementary outcomeA the fractionof times that A occurs in the limit that the measurement is repeated an in�nitenumber of times:



Interpretation of probability 5P (A) = limn!1 number of occurrences of outcome A in n measurementsn : (1.9)The probabilities for the occurrence of any one of several outcomes (i.e. for anon-elementary subset A) are determined from those for individual outcomes bythe addition rule given in the axioms of probability. These correspond in turn torelative frequencies of occurrence.The relative frequency interpretation is consistent with the axioms of prob-ability, since the fraction of occurrences is always greater than or equal to zero,the frequency of any out of a disjoint set of outcomes is the sum of the indi-vidual frequencies, and the measurement must by de�nition yield some outcome(i.e. P (S) = 1). The conditional probability P (AjB) is thus the number of caseswhere both A and B occur divided by the number of cases in which B occurs,regardless of whether A occurs. That is, P (AjB) gives the frequency of A withthe subset B taken as the sample space.Clearly the probabilities based on such a model can never be determinedexperimentally with perfect precision. The basic tasks of classical statistics areto estimate the probabilities (assumed to have some de�nite but unknown values)given a �nite amount of experimental data, and to test to what extent a particularmodel or theory that predicts probabilities is compatible with the observed data.The relative frequency interpretation is straightforward when studying phys-ical laws, which are assumed to act the same way in repeated experiments. Thevalidity of the assigned probability values can be experimentally tested. Thispoint of view is appropriate, for example, in particle physics, where repeatedcollisions of particles constitute repetitions of an experiment. The concept ofrelative frequency is more problematic for unique phenomena such as the bigbang. Here one can attempt to rescue the frequency interpretation by imagininga large number of similar universes, in some fraction of which a certain eventoccurs. Since, however, this is not even in principle realizable, the frequency heremust be considered as a mental construct to assist in expressing a degree of beliefabout the single universe in which we live.The frequency interpretation is the approach usually taken in standard textson probability and statistics, such as those of Fisher [Fis90], Stuart and Ord[Stu91] and Cram�er [Cra46]. The philosophy of probability as a frequency isdiscussed in the books by von Mises [Mis51, Mis64].1.2.2 Subjective probabilityAnother probability interpretation is that of subjective (also called Bayesian)probability. Here the elements of the sample space correspond to hypotheses orpropositions, i.e. statements that are either true or false. (When using subjectiveprobability the sample space is often called the hypothesis space.) One interpretsthe probability associated with a hypothesis as a measure of degree of belief:P (A) = degree of belief that hypothesis A is true: (1.10)



6 Fundamental conceptsThe sample space S must be constructed such that the elementary hypothesesare mutually exclusive, i.e. only one of them is true. A subset consisting ofmore than one hypothesis is true if any of the hypotheses in the subset is true.That is, the union of sets corresponds to the Boolean or operation and theintersection corresponds to and. One of the hypotheses must necessarily be true,i.e. P (S) = 1.The statement that a measurement will yield a given outcome a certain frac-tion of the time can be regarded as a hypothesis, so the framework of subjectiveprobability includes the relative frequency interpretation. In addition, however,subjective probability can be associated with, for example, the value of an un-known constant; this re
ects one's con�dence that its value lies in a certain �xedinterval. A probability for an unknown constant is not meaningful with the fre-quency interpretation, since if we repeat an experiment depending on a physicalparameter whose exact value is not certain (e.g. the mass of the electron), thenits value is either never or always in a given �xed interval. The correspond-ing probability would be either zero or one, but we do not know which. Withsubjective probability, however, a probability of 95% that the electron mass iscontained in a given interval is a re
ection of one's state of knowledge.The use of subjective probability is closely related to Bayes' theorem andforms the basis of Bayesian (as opposed to classical) statistics. The subset Aappearing in Bayes' theorem (equation (1.6)) can be interpreted as the hypothesisthat a certain theory is true, and the subset B can be the hypothesis that anexperiment will yield a particular result (i.e. data). Bayes' theorem then takeson the form P (theoryjdata) / P (datajtheory) � P (theory):Here P (theory) represents the prior probability that the theory is true, andP (datajtheory), called the likelihood, is the probability, under the assumptionof the theory, to observe the data which were actually obtained. The posteriorprobability that the theory is correct after seeing the result of the experiment isthen given by P (theoryjdata). Here the prior probability for the data P (data)does not appear explicitly, and the equation is expressed as a proportionality.Bayesian statistics provides no fundamental rule for assigning the prior proba-bility to a theory, but once this has been done, it says how one's degree of beliefshould change in the light of experimental data.Consider again the probability to have a disease given a positive test result.From the standpoint of someone studying a large number of potential carriersof the disease, the probabilities in this problem can be interpreted as relativefrequencies. The prior probability P (disease) is the overall fraction of people whocarry the disease, and the posterior probability P (diseasej+) gives the fraction ofpeople who are carriers out of those with a positive test result. A central problemof classical statistics is to estimate the probabilities that are assumed to describethe population as a whole by examining a �nite sample of data, i.e. a subsampleof the population.



Probability density functions 7A speci�c individual, however, may be interested in the subjective probabilitythat he or she has the disease given a positive test result. If no other informa-tion is available, one would usually take the prior probability P (disease) to beequal to the overall fraction of carriers, i.e. the same as in the relative frequencyinterpretation. Here, however, it is taken to mean the degree of belief that onehas the disease before taking the test. If other information is available, di�erentprior probabilities could be assigned; this aspect of Bayesian statistics is nec-essarily subjective, as the name of the probability interpretation implies. OnceP (disease) has been assigned, however, Bayes' theorem then tells how the prob-ability to have the disease, i.e. the degree of belief in this hypothesis, changes inlight of a positive test result.The use of subjective probability is discussed further in Sections 6.13, 9.8and 11.5.3. There exists a vast literature on subjective probability; of particularinterest are the books by Je�reys [Jef48], Savage [Sav72], de Finetti [Fin74] andthe paper by Cox [Cox46]. Applications of Bayesian methods are discussed inthe books by Lindley [Lin65], O'hagan [Oha94], Lee [Lee89] and Sivia [Siv96].1.3 Probability density functionsConsider an experiment whose outcome is characterized by a single continuousvariable x. The sample space corresponds to the set of possible values that xcan assume, and one can ask for the probability of observing a value within anin�nitesimal interval [x; x+dx].2 This is given by the probability density function(p.d.f.) f(x):probability to observe x in the interval [x; x+ dx] = f(x)dx: (1.11)In the relative frequency interpretation, f(x)dx gives the fraction of times thatx is observed in the interval [x; x + dx] in the limit that the total number ofobservations is in�nitely large. The p.d.f. f(x) is normalized such that the totalprobability (probability of some outcome) is one,ZS f(x)dx = 1; (1.12)where the region of integration S refers to the entire range of x, i.e. to the entiresample space.Although �nite data samples will be dealt with more thoroughly in Chapter5, it is illustrative here to point out the relationship between a p.d.f. f(x) and aset of n observations of x, x1; : : : ; xn. A set of such observations can be displayedgraphically as a histogram as shown in Fig. 1.2. The x axis of the histogram is2A possible confusion can arise from the notation used here, since x refers both to therandom variable and also to a value that can be assumed by the variable. Many authors useupper case for the random variable, and lower case for the value, i.e. one speaks of X taking ona value in the interval [x;x+ dx]. This notation is avoided here for simplicity; the distinctionbetween variables and their values should be clear from context.



8 Fundamental conceptsdivided into m subintervals or bins of width �xi, i = 1; : : : ;m, where �xi isusually but not necessarily the same for each bin. The number of occurrencesni of x in subinterval i, i.e. the number of entries in the bin, is given on thevertical axis. The area under the histogram is equal to the total number ofentries n multiplied by �x (or for unequal bin widths, area = Pmi=1 ni ��xi).Thus the histogram can be normalized to unit area by dividing each ni by thecorresponding bin width �xi and by the total number of entries in the histogramn. The p.d.f. f(x) corresponds to a histogram of x normalized to unit area inthe limit of zero bin width and an in�nitely large total number of entries, asillustrated in Fig. 1.2(d).
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Fig. 1.2 Histograms of various numbers of observations of a random variable x based on thesame p.d.f. (a) n = 100 observations and a bin width of �x = 0:5. (b) n = 1000 observations,�x = 0:2. (c) n = 10000 observations, �x = 0:1. (d) The same histogram as in (c), butnormalized to unit area. Also shown as a smooth curve is the p.d.f. according to which theobservations are distributed. For (a{c), the vertical axis N(x) gives the number of entries in abin containing x. For (d), the vertical axis is f(x) = N(x)=(n�x).One can consider cases where the variable x only takes on discrete values xi,for i = 1; : : : ; N , where N can be in�nite. The corresponding probabilities canbe expressed as



Probability density functions 9
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Fig. 1.3 (a) A probability density function f(x). (b) The corresponding cumulative distri-bution function F (x).probability to observe value xi = P (xi) = fi; (1.13)where i = 1; : : : ; N and the normalization condition isNXi=1 fi = 1: (1.14)Although most of the examples in the following are done with continuous vari-ables, the transformation to the discrete case is a straightforward correspondencebetween integrals and sums.The cumulative distribution F (x) is related to the p.d.f. f(x) byF (x) = Z x�1 f(x0)dx0; (1.15)i.e. F (x) is the probability for the random variable to take on a value less than orequal to x.3 In fact, F (x) is usually de�ned as the probability to obtain an out-come less than or equal to x, and the p.d.f. f(x) is then de�ned as @F=@x. Forthe `well-behaved' distributions (i.e. F (x) everywhere di�erentiable) typicallyencountered in data analysis, the two approaches are equivalent. Figure 1.3 illus-trates the relationship between the probability density f(x) and the cumulativedistribution F (x).For a discrete random variable xi with probabilities P (xi) the cumulativedistribution is de�ned to be the probability to observe values less than or equalto the value x,3Mathematicians call F (x) the `distribution' function, while physicists often use the worddistribution to refer to the probability density function. To avoid confusion we will use theterms cumulative distribution and probability density (or p.d.f.).



10 Fundamental concepts F (x) = Xxi�xP (xi): (1.16)A useful concept related to the cumulative distribution is the so-called quan-tile of order � or �-point. The quantile x� is de�ned as the value of the randomvariable x such that F (x�) = �, with 0 � � � 1. That is, the quantile is simplythe inverse function of the cumulative distribution,x� = F�1(�): (1.17)A commonly used special case is x1=2, called the median of x. This is often usedas a measure of the typical `location' of the random variable, in the sense thatthere are equal probabilities for x to be observed greater or less than x1=2.Another commonly used measure of location is the mode, which is de�nedas the value of the random variable at which the p.d.f. is a maximum. A p.d.f.may, of course, have local maxima. By far the most commonly used locationparameter is the expectation value, which will be introduced in Section 1.5.Consider now the case where the result of a measurement is characterized notby one but by several quantities, which may be regarded as a multidimensionalrandom vector. If one is studying people, for example, one mightmeasure for eachperson their height, weight, age, etc. Suppose a measurement is characterized bytwo continuous random variables x and y. Let the event A be `x observed in[x; x+ dx] and y observed anywhere', and let B be `y observed in [y; y+ dy] andx observed anywhere', as indicated in Fig. 1.4.
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Fig. 1.4 A scatter plot of two ran-dom variables x and y based on 1000observations. The probability for apoint to be observed in the squaregiven by the intersection of the twobands (the event A \ B) is given bythe joint p.d.f. times the area element,f(x; y)dxdy.The joint p.d.f. f(x; y) is de�ned byP (A \B) = probability of x in [x; x+ dx] and y in [y; y + dy]= f(x; y)dxdy: (1.18)



Probability density functions 11The joint p.d.f. f(x; y) thus corresponds to the density of points on a scatterplot of x and y in the limit of in�nitely many points. Since x and y must takeon some values, one has the normalization conditionZ ZS f(x; y)dxdy = 1: (1.19)Suppose a joint p.d.f. f(x; y) is known, and one would like to have the p.d.f.for x regardless of the value of y, i.e. corresponding to event A in Fig. 1.4. If oneregards the `event A' column as consisting of squares of area dx dy, each labeledby an index i, then the probability for A is obtained simply by summing theprobabilities corresponding to the individual squares,P (A) =Xi f(x; yi)dy dx = fx(x) dx: (1.20)The corresponding probability density, called the marginal p.d.f. for x, is thengiven by the function fx(x). In the limit of in�nitesimal dy, the sum becomes anintegral, so that the marginal and joint p.d.f.s are related byfx(x) = Z 1�1 f(x; y)dy: (1.21)Similarly, one obtains the marginal p.d.f. fy(y) by integrating f(x; y) over x,fy(y) = Z 1�1 f(x; y)dx: (1.22)The marginal p.d.f.s fx(x) and fy(y) correspond to the normalized histogramsobtained by projecting a scatter plot of x and y onto the respective axes. Therelationship between the marginal and joint p.d.f.s is illustrated in Fig. 1.5.From the de�nition of conditional probability (1.2), the probability for y tobe in [y; y + dy] with any x (event B) given that x is in [x; x+ dx] with any y(event A) is P (BjA) = P (A \B)P (A) = f(x; y)dxdyfx(x)dx : (1.23)The conditional p.d.f. for y given x, h(yjx), is thus de�ned ash(yjx) = f(x; y)fx(x) = f(x; y)R f(x; y0)dy0 : (1.24)This is a p.d.f. of the single random variable y; x is treated as a constant pa-rameter. Starting from f(x; y), one can simply think of holding x constant, andthen renormalizing the function such that its area is unity when integrated overy alone.The conditional p.d.f. h(yjx) corresponds to the normalized histogram of yobtained from the projection onto the y axis of a thin band in x (i.e. with in-�nitesimal width dx) from an (x; y) scatter plot. This is illustrated in Fig. 1.6 for
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Fig. 1.5 (a) The density of points on the scatter plot is given by the joint p.d.f. f(x; y).(b) Normalized histogram from projecting the points onto the y axis with the correspondingmarginal p.d.f. fy(y). (c) Projection onto the x axis giving fx(x).two values of x, leading to two di�erent conditional p.d.f.s, h(yjx1) and h(yjx2).Note that h(yjx1) and h(yjx2) in Fig. 1.6(b) are both normalized to unit area,as required by the de�nition of a probability density.Similarly, the conditional p.d.f. for x given y isg(xjy) = f(x; y)fy(y) = f(x; y)R f(x0; y)dx0 : (1.25)Combining equations (1.24) and (1.25) gives the relationship between g(xjy) andh(yjx), g(xjy) = h(yjx)fx(x)fy(y) ; (1.26)which is Bayes' theorem for the case of continuous variables (cf. equation (1.6)).By using f(x; y) = h(yjx) fx(x) = g(xjy) fy(y), one can express the marginalp.d.f.s as
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Fig. 1.6 (a) A scatter plot of random variables x and y indicating two in�nitesimal bandsin x of width dx at x1 (solid band) and x2 (dashed band). (b) The conditional p.d.f.s h(yjx1)and h(yjx2) corresponding to the projections of the bands onto the y axis.fx(x) = Z 1�1 g(xjy)fy(y)dy; (1.27)fy(y) = Z 1�1 h(yjx)fx(x)dx: (1.28)These correspond to the law of total probability given by equation (1.7), gener-alized to the case of continuous random variables.If `x in [x; x+ dx] with any y' (event A) and `y in [y+ dy] with any x' (eventB) are independent, i.e. P (A \ B) = P (A)P (B), then the corresponding jointp.d.f. for x and y factorizes: f(x; y) = fx(x) fy(y): (1.29)From equations (1.24) and (1.25), one sees that for independent random variablesx and y the conditional p.d.f. g(xjy) is the same for all y, and similarly h(yjx)does not depend on x. In other words, having knowledge of one of the variablesdoes not change the probabilities for the other. The variables x and y shown inFig. 1.6, for example, are not independent, as can be seen from the fact thath(yjx) depends on x.1.4 Functions of random variablesFunctions of random variables are themselves random variables. Suppose a(x) isa continuous function of a continuous random variable x, where x is distributedaccording to the p.d.f. f(x). What is the p.d.f. g(a) that describes the distributionof a? This is determined by requiring that the probability for x to occur between
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xy = z + dz Fig. 1.8 The region of integrationdS contained between the two curvesxy = z and xy = z + dz. Occurrenceof (x; y) values between the two curvesresults in occurrence of z values in thecorresponding interval [z; z + dz].As an example, consider two independent random variables, x and y, dis-tributed according to g(x) and h(y), and suppose we would like to �nd the p.d.f.of their product z = xy. Since x and y are assumed to be independent, theirjoint p.d.f. is given by g(x)h(y). Equation (1.33) then gives for the p.d.f. of z,f(z),f(z)dz = Z ZdS g(x)h(y)dxdy = Z 1�1 g(x)dx Z (z+dz)=jxjz=jxj h(y)dy; (1.34)where dS is given by the region between xy = z and xy = z + dz, as shown inFig. 1.8. This yields f(z) = Z 1�1 g(x)h(z=x)dxjxj= Z 1�1 g(z=y)h(y)dyjyj ; (1.35)where the second equivalent expression is obtained by reversing the order ofintegration. Equation (1.35) is often written f = g 
 h, and the function f iscalled the Mellin convolution of g and h.Similarly, the p.d.f. f(z) of the sum z = x+ y is found to bef(z) = Z 1�1 g(x)h(z � x)dx= Z 1�1 g(z � y)h(y)dy: (1.36)Equation (1.36) is also often written f = g 
 h, and f is called the Fourier



16 Fundamental conceptsconvolution of g and h. In the literature the names Fourier and Mellin are oftendropped and one must infer from context what kind of convolution is meant.Starting from n random variables, x = (x1; : : : ; xn), the following techniquecan be used to determine the joint p.d.f. of n linearly independent functionsai(x), with i = 1; : : : ; n. Assuming the functions a1; : : : ; an can be inverted togive xi(a1; : : : ; an), i = 1; : : : ; n, the joint p.d.f. for the ai is given byg(a1; : : : ; an) = f(x1; : : : ; xn)jJ j; (1.37)where jJ j is the absolute value of the Jacobian determinant for the transforma-tion, J = ������������ @x1@a1 @x1@a2 : : : @x1@an@x2@a1 @x2@a2 : : : @x2@an... ...: : : @xn@an ������������ : (1.38)To determine the marginal p.d.f. for one of the functions (say g1(a1)) the jointp.d.f. g(a1; : : : ; an) must be integrated over the remaining ai.In many cases the techniques given above are too di�cult to solve analytically.For example, if one is interested in a single function of n random variables, wheren is some large and itself possibly variable number, it is rarely practical to comeup with n�1 additional functions and then integrate the transformed joint p.d.f.over the unwanted ones. In such cases a numerical solution can usually be foundusing the Monte Carlo techniques discussed in Chapter 3. If only the mean andvariance of a function are needed, the so-called `error propagation' proceduresdescribed in Section 1.6 can be applied.For certain cases the p.d.f. of a function of random variables can be foundusing integral transform techniques, speci�cally, Fourier transforms of the p.d.f.sfor sums of random variables and Mellin transforms for products. The basicidea is to take the Mellin or Fourier transform of equation (1.35) or (1.36),respectively. The equation f = g 
 h is then converted into the product of thetransformed density functions, ~f = ~g � ~h. The p.d.f. f is obtained by �nding theinverse transform of ~f . A complete discussion of these methods is beyond thescope of this book; see e.g. [Spr79]. Some examples of sums of random variablesusing Fourier transforms (characteristic functions) are given in Chapter 10.1.5 Expectation valuesThe expectation value E[x] of a random variable x distributed according to thep.d.f. f(x) is de�ned as E[x] = Z 1�1 xf(x)dx = �: (1.39)



Expectation values 17The expectation value of x (also called the population mean or simply the meanof x) is often denoted by �. Note that E[x] is not a function of x, but dependsrather on the form of the p.d.f. f(x). If the p.d.f. f(x) is concentrated mostly inone region, then E[x] represents a measure of where values of x are likely to beobserved. It can be, however, that f(x) consists of two widely separated peaks,such that E[x] is in the middle where x is seldom (or never) observed.For a function a(x), the expectation value isE[a] = Z 1�1 ag(a)da = Z 1�1 a(x)f(x)dx; (1.40)where g(a) is the p.d.f. of a and f(x) is the p.d.f. of x. The second integral isequivalent; this can be seen by multiplying both sides of equation (1.30) by aand integrating over the entire space.Some more expectation values of interest are:E[xn] = Z 1�1 xnf(x)dx = �0n; (1.41)called the nth algebraic moment of x, for which � = �01 is a special case, andE[(x�E[x])n] = Z 1�1(x� �)nf(x)dx = �n; (1.42)called the nth central moment of x. In particular, the second central moment,E[(x�E[x])2] = Z 1�1(x� �)2f(x)dx = �2 = V [x]; (1.43)is called the population variance (or simply the variance) of x, written �2 orV [x]. Note that E[(x� E[x])2] = E[x2]� �2. The variance is a measure of howwidely x is spread about its mean value. The square root of the variance � iscalled the standard deviation of x, which is often useful because it has the sameunits as x.For the case of a function a of more than one random variable x = (x1; : : : ; xn),the expectation value isE[a(x)] = Z 1�1 ag(a)da= Z 1�1 : : :Z 1�1 a(x)f(x)dx1 : : :dxn = �a; (1.44)where g(a) is the p.d.f. for a and f(x) is the joint p.d.f. for the xi. In the following,the notation �a = E[a] will often be used. As in the single-variable case, the twointegrals in (1.44) are equivalent, as can be seen by multiplying both sides ofequation (1.33) by a and integrating over the entire space. The variance of a is



18 Fundamental conceptsV [a] = E[(a� �a)2]= Z 1�1 : : :Z 1�1(a(x)� �a)2f(x)dx1 : : :dxn = �2a; (1.45)and is denoted by �2a or V [a]. The covariance of two random variables x and yis de�ned as Vxy = E[(x� �x)(y � �y)] = E[xy]� �x�y= Z 1�1 Z 1�1 x y f(x; y) dx dy � �x�y; (1.46)where �x = E[x] and �y = E[y]. The covariance matrix Vxy, also called the errormatrix, is sometimes denoted by cov[x; y]. More generally, for two functions aand b of n random variables x = (x1; : : : ; xn), the covariance cov[a; b] is given bycov[a; b] = E[(a� �a)(b� �b)]= E[ab]� �a�b= Z 1�1 Z 1�1 a b g(a; b) da db � �a�b= Z 1�1 : : :Z 1�1 a(x) b(x) f(x)dx1 : : :dxn � �a�b; (1.47)where g(a; b) is the joint p.d.f. for a and b and f(x) is the joint p.d.f. for the xi.As in equation (1.44), the two integral expressions for Vab are equivalent. Notethat by construction the covariance matrix Vab is symmetric in a and b and thatthe diagonal elements Vaa = �2a (i.e. the variances) are positive.In order to give a dimensionless measure of the level of correlation betweentwo random variables x and y, one often uses the correlation coe�cient, de�nedby �xy = Vxy�x�y : (1.48)One can show (see e.g. [Fro79, Bra92]) that the correlation coe�cient lies in therange �1 � �xy � 1.One can roughly understand the covariance of two random variables x andy in the following way. Vxy is the expectation value of (x � �x)(y � �y), theproduct of the deviations of x and y from their means, �x and �y. Suppose that
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Fig. 1.9 Scatter plots of random variables x and y with (a) a positive correlation, � = 0:75,(b) a negative correlation, � = �0:75, (c) � = 0:95, and (d) � = 0:25. For all four cases thestandard deviations of x and y are �x = �y = 1.having x greater than �x enhances the probability to �nd y greater than �y, andx less than �x gives an enhanced probability to have y less than �y. Then Vxyis greater than zero, and the variables are said to be positively correlated. Sucha situation is illustrated in Figs 1.9 (a), (c) and (d), for which the correlationcoe�cients �xy are 0:75, 0:95 and 0:25, respectively. Similarly, Vxy < 0 is called anegative correlation: having x > �x increases the probability to observe y < �y.An example is shown in Fig. 1.9(b), for which �xy = �0:75.From equations (1.29) and (1.44), it follows that for independent randomvariables x and y, E[xy] = E[x]E[y] = �x�y; (1.49)(and hence by equation (1.46), Vxy = 0) although the converse is not necessarilytrue. Figure 1.10, for example, shows a two-dimensional scatter plot of a p.d.f.for which Vxy = 0, but where x and y are not independent. That is, f(x; y) doesnot factorize according to equation (1.29), and hence knowledge of one of the



20 Fundamental concepts
x

0

2

4

6

8

10

0 2 4 6 8 10

y Fig. 1.10 Scatter plot of randomvariables x and y which are not inde-pendent (i.e. f(x; y) 6= fx(x)fy(y)) butfor which Vxy = 0 because of the par-ticular symmetry of the distribution.variables a�ects the conditional p.d.f. of the other. The covariance Vxy vanishes,however, because f(x; y) is symmetric in x about the mean �x.1.6 Error propagationSuppose one has a set of n random variables x = (x1; : : : ; xn) distributed accord-ing to some joint p.d.f. f(x). Suppose that the p.d.f. is not completely known,but the mean values of the xi, � = (�1; : : : ; �n), and the covariance matrix, Vij ,are known or have at least been estimated. (Methods for doing this are describedin Chapter 5.)Now consider a function of the n variables y(x). To determine the p.d.f. fory, one must in principle follow a procedure such as those described in Section1.4 (e.g. equations (1.33) or (1.37)). We have assumed, however, that f(x) is notcompletely known, only the means � and the covariance matrix Vij, so this isnot possible. One can, however, approximate the expectation value of y and thevariance V [y] by �rst expanding the function y(x) to �rst order about the meanvalues of the xi, y(x) � y(�) + nXi=1 � @y@xi�x=� (xi � �i): (1.50)The expectation value of y is to �rst orderE[y(x)] � y(�); (1.51)since E[xi � �i] = 0. The expectation value of y2 is



Error propagation 21E[y2(x)] � y2(�) + 2y(�) � nXi=1 � @y@xi �x=� E[xi � �i]+ E 24 nXi=1 � @y@xi �x=� (xi � �i)!0@ nXj=1 � @y@xj �x=� (xj � �j)1A35= y2(�) + nXi;j=1� @y@xi @y@xj �x=� Vij ; (1.52)so that the variance �2y = E[y2]� (E[y])2 is given by�2y � nXi;j=1� @y@xi @y@xj �x=� Vij : (1.53)Similarly, one obtains for a set of m functions y1(x); : : : ; ym(x) the covariancematrix Ukl = cov[yk; yl] � nXi;j=1�@yk@xi @yl@xj �x=� Vij: (1.54)This can be expressed in matrix notation asU = AV AT ; (1.55)where the matrix of derivatives A isAij = � @yi@xj �x=� (1.56)and AT is the transpose of A. Equations (1.53){(1.56) form the basis of errorpropagation (i.e. the variances, which are used as measures of statistical uncer-tainties, are propagated from the xi to the functions y1, y2, etc.). (The term`error' will often be used to refer to the uncertainty of a measurement, whichin most cases is given by the standard deviation of the corresponding randomvariable.)For the case where the xi are not correlated, i.e. Vii = �2i and Vij = 0 fori 6= j, equations (1.53) and (1.54) become�2y � nXi=1 � @y@xi �2x=� �2i (1.57)and



22 Fundamental concepts Ukl � nXi=1 �@yk@xi @yl@xi �x=� �2i : (1.58)Equation (1.53) leads to the following special cases. If y = x1 + x2, thevariance of y is then �2y = �21 + �22 + 2V12: (1.59)For the product y = x1x2 one obtains�2yy2 = �21x21 + �22x22 + 2 V12x1x2 : (1.60)If the variables x1 and x2 are not correlated (V12 = 0), the relations above statethat errors (i.e. standard deviations) add quadratically for the sum y = x1+x2,and that the relative errors add quadratically for the product y = x1x2.In deriving the error propagation formulas we have assumed that the meansand covariances of the original set of variables x1; : : : ; xn are known (or at leastestimated) and that the desired functions of these variables can be approximatedby the �rst-order Taylor expansion around the means �1; : : : ; �n. The latterassumption is of course only exact for a linear function. The approximationbreaks down if the function y(x) (or functions y(x)) are signi�cantly nonlinearin a region around the means � of a size comparable to the standard deviationsof the xi, �1; : : : ; �n. Care must be taken, for example, with functions like y(x) =1=x when E[x] = � is comparable to or smaller than the standard deviation of x.Such situations can be better treated with the Monte Carlo techniques describedin Chapter 3, or using con�dence intervals as described in Section 9.2.1.7 Orthogonal transformation of random variablesSuppose one has a set of n random variables x1; : : : ; xn and their covariancematrix Vij = cov[xi; xj], for which the o�-diagonal elements are not necessarilyzero. Often it can be useful to de�ne n new variables y1; : : : ; yn that are notcorrelated, i.e. for which the new covariance matrix Uij = cov[yi; yj] is diagonal.We will show that this is always possible with a linear transformation,yi = nXj=1Aijxj: (1.61)Assuming such a transformation, the covariance matrix for the new variables is



Orthogonal transformation of random variables 23Uij = cov[yi; yj ] = cov " nXk=1Aikxk; nXl=1 Ajlxl#= nXk;l=1AikAjl cov[xk; xl]= nXk;l=1AikVklATlj : (1.62)This is simply a special case of the error propagation formula (1.54); here it isexact, since the function (1.61) is linear.The problem thus consists of �nding a matrix A such that U = AV AT isdiagonal. This is simply the diagonalization of a real, symmetric matrix, a well-known problem of linear algebra (cf. [Arf95]). The solution can be found by �rstdetermining the eigenvectors ri, i = 1; : : : ; n, of the covariance matrix V . Thatis, one must solve the equation V ri = �iri; (1.63)where in the matrix equations the vector r should be understood as a columnvector. The eigenvectors ri are only determined up to a multiplicative factor,which can be chosen such that they all have unit length. Furthermore, one caneasily show that since the covariance matrix is symmetric, the eigenvectors areorthogonal, i.e. ri � rj = nXk=1 rikrjk = �ij: (1.64)If two or more of the eigenvalues �i; �j; : : : are equal, then the directions ofthe corresponding eigenvectors ri; rj ; : : : are not uniquely determined, but cannevertheless be chosen such that the eigenvectors are orthogonal.The n rows of the transformation matrix A are then given by the n eigen-vectors ri (in any order), i.e. Aij = rij , and the transpose matrix thus has theeigenvectors as its columns, ATij = rji . That this matrix has the desired propertycan be shown explicitly by substituting it into equation (1.62),Uij = nXk;l=1AikVklATlj = nXk;l=1 rikVklrjl= nXk=1 rik�jrjk= �jri � rj= �j�ij: (1.65)



24 Fundamental conceptsThus the variances of the transformed variables y1; : : : ; yn are given by theeigenvalues of the original covariance matrix V , and all o�-diagonal elements ofU are zero. Since the eigenvectors are orthonormal (equation (1.64)), one hasthe property nXj=1AijATjk = nXj=1 rijrkj = ri � rk = �ik; (1.66)or as a matrix equation AAT = 1, and hence AT = A�1. Such a transformationis said to be orthogonal, i.e. it corresponds to a rotation of the vector x into ysuch that the norm remains constant, since jyj2 = yTy = xTATAx = jxj2.In order to �nd the eigenvectors of V , the standard techniques of linearalgebra can used (see e.g. [Arf95]). For more than three variables, the problembecomes impractical to solve analytically, and numerical techniques such as thesingular value decomposition are necessary (see e.g. [Bra92, Pre92]).In two dimensions, for example, the covariance matrix for the variables x =(x1; x2) can be expressed asV = 0@ �21 ��1�2��1�2 �22 1A : (1.67)The eigenvalue equation (V � I�)r = 0 (where I is the 2� 2 unit matrix) issolved by requiring that the determinant of the matrix of coe�cients be equalto zero, det(V � I�) = 0: (1.68)The two eigenvalues �� are found to be�� = 12 ��21 + �22 �q(�21 + �22)2 � 4(1� �2)�21�22 � : (1.69)The two orthonormal eigenvectors r� can be parametrized by an angle �,r+ =  cos �sin � ! r� =  � sin �cos � ! : (1.70)Substituting the eigenvalues (1.69) back into the eigenvalue equation determinesthe angle �, � = 12 tan�1� 2��1�2�21 � �22� : (1.71)The rows of the desired transformation matrix are thus given by the twoeigenvectors,



Orthogonal transformation of random variables 25A = 0@ cos � sin �� sin � cos � 1A : (1.72)This corresponds to a rotation of the vector (x1; x2) by an angle �. An exampleis shown in Fig. 1.11 where the original two variables have �1 = 1:5, �2 = 1:0,and a correlation coe�cient of � = 0:7.
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(b)Fig. 1.11 Scatter plot of (a) two correlated randomvariables (x1; x2) and (b) the transformedvariables (y1; y2) for which the covariance matrix is diagonal.Although uncorrelated variables are often easier to deal with, the transformedvariables may not have as direct an interpretation as the original ones. Exam-ples where this procedure could be used will arise in Chapters 6 through 8 onparameter estimation, where the estimators for a set of parameters will often becorrelated.



2Examples of probabilityfunctionsIn this chapter a number of commonly used probability distributions and densityfunctions are presented. Properties such as mean and variance are given, mostlywithout proof; the moments can be found by using characteristic functions in-troduced in Chapter 10. Additional p.d.f.s can be found in [Fro79] Chapter 4,[Ead71] Chapter 4, [Bra92] Chapter 5.2.1 Binomial and multinomial distributionsConsider a series of N independent trials or observations, each having two possi-ble outcomes, here called `success' and `failure', where the probability for successis some constant value, p. The set of trials can be regarded as a single measure-ment and is characterized by a discrete random variable n, de�ned to be the totalnumber of successes. That is, the sample space is de�ned to be the set of possi-ble values of n successes given N observations. If one were to repeat the entireexperiment many times with N trials each time, the resulting values of n wouldoccur with relative frequencies given by the so-called binomial distribution.The form of the binomial distribution can be derived in the following way.We have assumed that the probability of success in a single observation is p andthe probability of failure is 1 � p. Since the individual trials are assumed to beindependent, the probability for a series of successes and failures in a particularorder is equal to the product of the individual probabilities. For example, theprobability in �ve trials to have success, success, failure, success, failure in thatorder is p � p � (1 � p) � p � (1 � p) = p3(1 � p)2. In general the probability for aparticular sequence of n successes and N � n failures is pn(1 � p)N�n. We arenot interested in the order, however, only in the �nal number of successes n. Thenumber of sequences having n successes in N events isN !n!(N � n)! ; (2.1)so the total probability to have n successes in N events isf(n;N; p) = N !n!(N � n)! pn (1� p)N�n; (2.2)


