Applied Statistics Troels C. Petersen (NBI)

5.6. 95.659

"Statistics is merely a quantization of common sense"

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Introduction:

- The role of statistics and uncertainties.
- The basic axioms of statistics.
- The Central Limit Theorem.
- A little experiment.
- Probability and Statistics.
- The basis of exact sciences, yet not exact.

- Rooms and hours.
- Computers and software.
- Curriculum and exam.

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Introduction:

- The role of statistics and uncertainties.
- The basic axioms of statistics.
- The Central Limit Theorem.
- A little experiment.
- Probability and Statistics.
- The basis of exact sciences, yet not exact.

- Rooms and hours.
- Computers and software.
- Curriculum and exam.

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Introduction:

- The role of statistics and uncertainties.
- The basic axioms of statistics.
- The Central Limit Theorem.
- A little experiment.
- Probability and Statistics.
- The basis of exact sciences, yet not exact.

- Rooms and hours.
- Computers and software.
- Curriculum and exam.

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Introduction:

- The role of statistics and uncertainties.
- The basic axioms of statistics.
- The Central Limit Theorem.
- A little experiment.
- Probability and Statistics.
- The basis of exact sciences, yet not exact.

- Rooms and hours.
- Computers and software.
- Curriculum and exam.

"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." [H. G. Wells]

Law of large numbers

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

AVERAGE CONVERGES TO EXPECTED VALUE OF 3.5

Tuesday, September 6, 2011

Central Limit Theorem

Central Limit Theorem:

The sum of N *independent* continuous random variables x_i with means μ_i and variances σ_i^2 becomes a Gaussian random variable with mean $\mu = \Sigma_i \mu_i$ and variance $\sigma^2 = \Sigma_i \sigma_i^2$ in the limit that N approaches infinity.

This holds under fairly general conditions, which means that the Gaussian distribution takes a central role in statistics.

ProportionOfHeads

Histogram of ProportionOfHeads

0.65

Tuesday, September 6, 2011

Take the sum of 100 uniform numbers! Repeat 100000 times to see what distribution the sum has...

The result is a bell shaped curve – a socalled **normal** or **Gaussian** distribution.

It turns out, that this is very general!!!

Now take the sum of just **10** uniform numbers!

Now take the sum of just **5** uniform numbers!

Now take the sum of just **3** uniform numbers!

This time we will try with a much more "**nasty**" function. Take the sum of 100 *exponential* numbers! Repeat 100000 times to see the sum's distribution...

Even with such a non-Gaussian skewed distribution, the sum quickly becomes Gaussian!!!

It turns out, that this fact saves us from much trouble: Makes statistics "easy"!

Generally, measurements are the result of many different influences from various distributions! Here **10** uniform numbers and **10** exponential numbers:

Looking at z-coordinate of tracks at vertex from proton collisions in CERNs LHC accelerator by the ATLAS detector, this is what you get:

Central Limit Theorem

Central Limit Theorem

