Applied Statistics Troels C. Petersen (NBI)

Tuesday, September 6, 2011

Defining the mean

There are several ways of defining "a typical" value from a dataset:a) Arithmetic mean b) Mode (most probably) c) Median (half below, half above)d) Geometric mean e) Harmonic mean

Mean and width

It turns out, that the best estimator for the **mean** is (as you all know):

$$\hat{\mu} = \frac{1}{N} \sum x_i = \bar{x}$$

For the width of the distribution (a.k.a. standard deviation or RMS) it is:

$$\hat{\sigma} = \sqrt{\frac{1}{N} \sum (x_i - \mu)^2}$$

Note the "hat", which means "estimator". It is sometimes dropped...

Mean and width

It turns out, that the best estimator for the **mean** is (as you all know):

$$\hat{\mu} = \frac{1}{N} \sum x_i = \bar{x}$$

For the width of the distribution (a.k.a. standard deviation or RMS) it is:

$$\hat{\sigma} = \sqrt{\frac{1}{N-1} \sum (x_i - \bar{x})^2}$$

Note the "hat", which means "estimator". It is sometimes dropped...

Relation between RMS and Gaussian width...

When a distribution is Gaussian, the RMS corresponds to the Gaussian width σ :

Mean and width

What is the **uncertainty on the mean?** And how quickly does it improve with more data?

Tuesday, September 6, 2011

Weighted mean and width

What if we are given data, which has different uncertainties? How to average these, and what is the uncertainty on the average?

