
Applied Statistics Error propagation

Troels C. Petersen (NBI)

"Statistics is merely a quantization of common sense"

Thursday, September 6, 2012

Error propagation

Imagine that y is a function of x_i , and that we wish to find the error on y from the errors on x_i . Making a Taylor expansion of the function y gives:

$$y(\bar{x}) \approx y(\bar{\mu}) + \sum_{i=1}^{n} \frac{\delta y}{\delta x_i} (x_i - \mu_i)$$

In order to get the uncertainty of y as a function of the variables x_i we calculate:

$$\begin{split} E[y(\bar{x})] &\approx y(\bar{\mu}) \\ E[y^2(\bar{x})] &\approx y^2(\bar{\mu}) + \sum_{i,j=1}^n \left[\frac{\delta y}{\delta x_i} \frac{\delta y}{\delta x_j} \right]_{\bar{x}=\bar{\mu}} V_{ij} \end{split}$$

Error propagation formula

$$\sigma_y^2 = \sum_{i,j=1}^n \left[rac{\delta y}{\delta x_i} rac{\delta y}{\delta x_j}
ight]_{ar{x} = ar{\mu}} V_{ij}$$

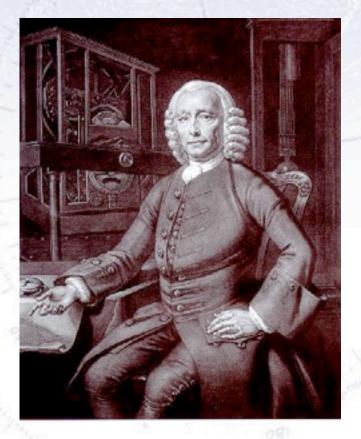
If there are no correlations, only the diagonal (individual errors) enter:

$$\sigma_y^2 = \sum_{i=1}^n \left[rac{\delta y}{\delta x_i}
ight]_{ar{x}=ar{\mu}}^2 \sigma_i^2$$

Specific error propagation formula Addition

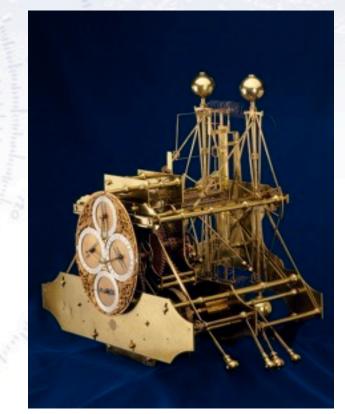
x = au + bv

$\sigma_x^2 = a^2 \sigma_u^2 + b^2 \sigma_v^2 + 2ab \sigma_{uv}^2$


Specific error propagation formula Multiplication

x = auv

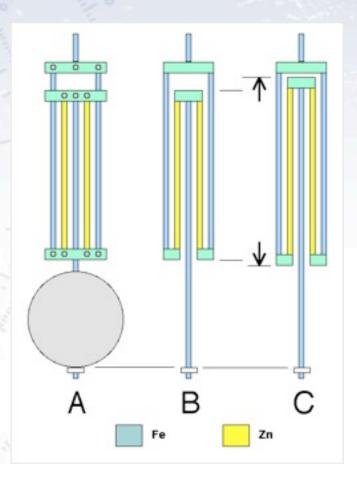
 $\sigma_x^2 = (av\sigma_u)^2 + (au\sigma_v)^2 + 2a^2uv\sigma_{uv}^2$


 $\frac{\sigma_x^2}{r^2} = \frac{\sigma_u^2}{u^2} + \frac{\sigma_v^2}{v^2} + 2\frac{\sigma_{uv}^2}{uv}$

Error propagation in use...

John Harrison (24 March 1693 – 24 March 1776) British clockmaker extraordinaire "Won" the Longitude Act prize (3 sec/day).

Harrison's first sea clock (H1)



Harrison build H1-H5. K1 (Copy of H4) was used by James Cook.

Thursday, September 6, 2012

Error propagation in use...

Cancel the change in length (in fact moment of inertia) with temperature.

Coefficient of thermal expansion: Iron = $11.8 \times 10^{-6}/C^{\circ}$ Zinc = $30.2 \times 10^{-6}/C^{\circ}$

Reporting Uncertainties

The systematic uncertainties of a measurement should be reported in a table, and if measurements are combined, the correlation needs consideration.

CDF II preliminary

L = 200 pb⁻¹

m _T Uncertainty [Me	/] Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	- 3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _{II} Efficiency	3	1 2	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
p _T (W)	3	3	3
PDF	11	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60	26

Error propagation at work!

Analysis of tiny differences in Uranus' orbit from Newtonian prediction led to the prediction and discovery of Neptune!

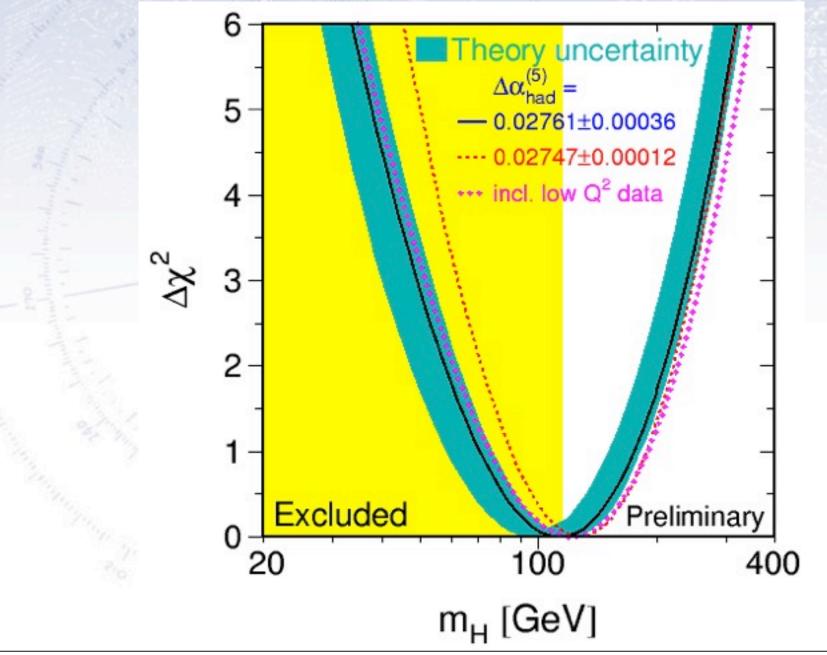

Continuing with Mercury...

TABLE II. Contributions to the motion of the perihelia of Mercury and the earth.

Cause		Motion of perihelion				
Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Solar oblateness Moon General precessi		39 39 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 300 300	.03	$\begin{array}{r} Mercury\\ 0,025\pm0,00\\ 277.856\pm0.68\\ 90.038\pm0.08\\ 2.536\pm0.00\\ 153.584\pm0.00\\ 7.302\pm0.01\\ 0.141\pm0.00\\ 0.042\pm0.00\\ 0.010\pm0.02\\ 5025.645\pm0.50\\ \end{array}$	345.49 ± 0.8 97.69±0.1 696.85±0.0 18.74±0.0 0.57±0.0 0.18±0.0 0.00±0.0 7.68±0.0
Sum Observed motion	1				$\begin{array}{r} 5557.18 \ \pm 0.85 \\ 5599.74 \ \pm 0.41 \end{array}$	$^{6179.1\ \pm 2.5}_{6183.7\ \pm 1.1}$
Difference Relativity effect					$\substack{42.56 \ \pm 0.94 \\ 43.03 \ \pm 0.03}$	$4.6 \pm 2.7 \\ 3.8 \pm 0.0$

Advanced example of error propagation (Higgs particle mass):

