Problem Set

Summary of the problem set

General remarks

Problem 1.1

This problem was to exercise the basic PDF skills.

Almost all had it correct.

$$
\begin{aligned}
& \langle t\rangle=\int_{t_{0}}^{\infty} t f(t) d t \Rightarrow \\
& \langle t\rangle=\frac{1}{\tau} e^{-t_{0} / \tau} \int_{t_{0}}^{\tau} t e^{-t / \tau} d t \Rightarrow
\end{aligned}
$$

The answer can be "guessed" from simple principles.

$$
f(t)=C e^{-t / \tau} \quad t \in\left[t_{0}, \infty\right]
$$

$$
\langle t\rangle=\tau+t_{0}
$$

$$
\begin{aligned}
\int_{t_{0}}^{\infty} f(t) d t & =1 \Rightarrow \\
\int_{t_{0}}^{\infty} C e^{-t / \tau} d t & =1 \Rightarrow \\
C & =\frac{1}{\tau e^{-t_{0} / \tau}} \Rightarrow \\
f(t) & =\frac{1}{\tau} e^{-\left(t-t_{0}\right) / \tau}
\end{aligned}
$$

$$
\left\langle t^{2}\right\rangle=\int_{t_{0}}^{\infty} t^{2} f(t) d t \Rightarrow
$$

$$
\begin{aligned}
\left\langle t^{2}\right\rangle & =\frac{1}{\tau} e^{-t_{0} / \tau} \int_{t_{0}}^{\tau} t^{2} e^{-t / \tau} d t \Rightarrow \\
\left\langle t^{2}\right\rangle & =2 \tau^{2}+2 t_{0} \tau+t_{0}^{2} \\
\sigma & =\sqrt{\left\langle t^{2}\right\rangle-\langle t\rangle^{2}} \Rightarrow \\
\sigma & =\tau
\end{aligned}
$$

Problem 1.2

The PDF to use is a binomial (or Poisson in last problem).

Again, almost everybody solved it well.

Flipping coins follows an binomial distribution. So the chance of r successes in n trials and with a probability given by p is:

$$
\begin{equation*}
P(r ; p, n)=p^{r}(1-p)^{n-r} \frac{n!}{r!(n-r)!} \tag{4}
\end{equation*}
$$

The change of getting one head in one throw is $50 \%, p=0.50$. So the probability of 14 heads or more ($20>r>14$) in 20 throws ($n=20$) is given by the sum over the individual r's probabilities:

$$
\begin{equation*}
\sum_{r=14}^{20} P(r ; p=0.5,20)=0.0577 \tag{5}
\end{equation*}
$$

So the probability of getting 14 or more heads in 20 throws is 5.77%.
The change of getting 18 or more heads in twenty throws is given by the same distribution:

$$
\begin{equation*}
\sum_{r=18}^{20} P(r ; p=0.5,20)=0.000201 \tag{6}
\end{equation*}
$$

So it is extremely low. Now the next I do is simply to calculate a new binomial with the new $\mathrm{n}(n=100), \mathrm{p}(p=0.000201)$ and $\mathrm{r}(r=1)$.

$$
\begin{equation*}
\sum_{r=1}^{100} P(r ; p=0.000201,20)=0.0199 \tag{7}
\end{equation*}
$$

So barely two percent. Due to the low probability and high n, this could also have been calculated by the use of Poison statistics.

Problem 1.2

The PDF to use is a binomial (or Poisson in last problem).

Again, almost everybody solved it well.

Flipping coins follows an binomial distribution. So the chance of r successes in n trials and with a probability given by p is:

$$
\begin{equation*}
P(r ; p, n)=p^{r}(1-p)^{n-r} \frac{n!}{r!(n-r)!} \tag{4}
\end{equation*}
$$

The change of getting one head in one throw is $50 \%, p=0.50$. So the probability of 14 heads or more $(20>r>14)$ in 20 throws ($n=20$) is given by the sum over the individual r's probabilities:

14 or more heads in 20 throws is 5.77%.
more heads in twenty throws is given by the same distribu-

$$
\begin{equation*}
\sum_{=18}^{20} P(r ; p=0.5,20)=0.000201 \tag{6}
\end{equation*}
$$

the next I do is simply to calculate a new binomial with the)0201) and $\mathrm{r}(r=1)$.
to the low probability and high n , this could also have been
ton statistics. ion statistics.

Problem 2.1

Combining measurements in a weighted average, with a Chi-square is a requirement!
p-value $=3.1 \%$ is suspicious, but not to be rejected ASAP.

Combination is in agreement with official G.

	Mean $10^{-11} \mathrm{~m}^{3} / \mathrm{kgs}$	Uncertainty $10^{-11} \mathrm{~m}^{3} / \mathrm{kgs}$	χ^{2}	Probability
Calculated	6.47	0.18	12.26	0.03
Fitted	6.47	0.18	12.26	0.03

The true value is $G=6.67384 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$, and therefore the measured value af G is 1.13 sigma away, which is within the 95 (which is a fair limit) \% confidence level. This means that it matches the true value satisfactory.

Problem 2.2

Problem might have benefitted from a figure:

Numbers chosen not to lead to too large improvement. Most did OK...

$$
\begin{aligned}
\sigma_{T} & =3.14 \sqrt{\frac{L}{9.82 \mathrm{~m} / \mathrm{s}^{2}}} 11.3 \times 10^{-5} \mathrm{~m} / \mathrm{mK} \cdot 2.5 \mathrm{~K} \\
\sigma_{T} & =2.83 \times 10^{-5} \sqrt{L} \frac{\mathrm{~s}}{\sqrt{\mathrm{~m}}}
\end{aligned}
$$

$$
\sigma_{L}^{2}=\left(\frac{\partial L_{I}}{\partial T} \sigma_{t}\right)^{2}+\left(\frac{\partial L_{B}}{\partial \sigma_{t} T}\right)^{2}-2\left(\frac{\partial L_{I}}{\partial T}\right)\left(\frac{\partial L_{B}}{\partial T}\right) \sigma_{t}^{2}
$$

$$
\sigma_{L}^{2}=\left(1.6 L \alpha \sigma_{t}\right)^{2}+\left(0.6 L \beta \sigma_{t}\right)^{2}-2 \cdot 1.6 \cdot 0.6 L^{2} \alpha \beta \sigma_{t}^{2}
$$

$$
\sigma_{L}=L \sigma_{t}(1.6 \alpha-0.6 \beta)
$$

Note: This problem could have been done/checked with MC!

$$
\begin{aligned}
\sigma_{T} & =\pi \sqrt{\frac{L}{g}}(1.6 \alpha-0.6 \beta) \sigma_{t} \\
\sigma_{T} & =1.7 \times 10^{-5} \sqrt{L} \frac{\mathrm{~s}}{\sqrt{\mathrm{~m}}}
\end{aligned}
$$

Problem 2.3

2.3 The index of refraction for sugar solution in water is measured to be:

$$
n_{\mathrm{s}}=n_{\text {air }} \frac{\sin \theta_{\text {air }}}{\sin \theta_{\mathrm{s}}}=1 \cdot \frac{\sin 25.21^{\circ}}{17.91^{\circ}}=1.385
$$

with an error calculated to be:

$$
\begin{aligned}
\sigma_{\mathrm{s}} & =\left[\left(n_{\mathrm{air}} \frac{\cos \theta_{\text {air }}}{\sin \theta_{\mathrm{s}}} \sigma_{\theta, \text { air }}\right)^{2}+\left(n_{\text {air }} \frac{\cos \theta_{\mathrm{s}} \sin \theta_{\text {air }}}{\sin ^{2} \theta_{\mathrm{s}}} \sigma_{\theta, \mathrm{s}}\right)^{2}\right]^{1 / 2} \\
& =0.008
\end{aligned}
$$

The percentage of the solution assuming a linear interpolation is given by $P=$ $\frac{75(n-1.3330)}{1.4774-1.3330}$ where n is the index of refraction and P is the percentage of the solution. For the above numbers we get:

$$
\begin{aligned}
P & =\frac{75\left(n_{\mathrm{s}}-1.3330\right)}{1.4774-1.3330} \\
& =27 \% \\
\sigma_{P} & =\frac{75}{1.4774-1.3330} \cdot 0.008 \\
& =4 \%
\end{aligned}
$$

Problem 3.1

Normalization and transformation method.

I was happy to see, that almost all of you can now produce numbers according to any distribution.

Problem 3.2

$$
\begin{aligned}
& \langle R\rangle=3 \sum_{i=1}^{10} \frac{i}{10}+6 \sum_{j=1}^{8} \frac{j}{8}+10 \sum_{k=1}^{6} \frac{k}{6} \Rightarrow \\
& \langle R\rangle=\frac{157}{2}=78.5
\end{aligned}
$$

While this problem can in principle be calculated by hand (i.e. analytically), Monte Carlo is superior (or at least faster).

$$
\sigma^{2}=3\left(\sum_{i=1}^{10} \frac{i^{2}}{10}-\left(\sum_{i=1}^{10} \frac{i}{10}\right)^{2}\right)+6\left(\sum_{j=1}^{8} \frac{j^{2}}{8}-\left(\sum_{j=1}^{8} \frac{j}{8}\right)^{2}\right)+10\left(\sum_{k=1}^{6} \frac{k^{2}}{6}-\left(\sum_{k=1}^{6} \frac{k}{6}\right)^{2}\right) \Rightarrow
$$

$$
\sigma=9.24
$$

$$
P_{\text {gaus }}(x \geq 100, \mu=78.5, \sigma=9.242)=\int_{100}^{\infty} \frac{1}{\sqrt{2 \cdot \pi} * 9.242} e^{\frac{(x-78.5)^{2}}{2 \cdot 9.242^{2}}} d x
$$

$$
=0.01000
$$

Despite being discreet distributions, central limit theorem works well.

However, not perfectly...

$$
P_{\text {sum } \geq 100}=1.10 \pm 0.01 \%
$$

Problem 4.1

$$
\begin{aligned}
& P_{N_{H T}>6}=\sum_{r=7}^{35} p_{e}^{r}\left(1-p_{e}\right)^{35-r} \frac{35!}{r!(35-r)!} \Rightarrow \quad \begin{array}{l}
0.35 \\
0.30
\end{array} \\
& P_{N_{H T}>6}=0.706 \\
& P_{N_{H T}>6}=\sum_{r=7}^{35} p_{p}^{r}\left(1-p_{p}\right)^{35-r} \frac{35!}{r!(35-r)!} \Rightarrow \text { E }_{\text {R }^{5}}^{0.20} \\
& P_{N_{H T}>6}=0.000548 \\
& \text { Electrons through TRT } \\
& \text { (} \mathrm{p}=0.226, \mathrm{n}=35 \text {) } \\
& \text { Pions through TRT } \\
& \text { (} \mathrm{p}=0.042, \mathrm{n}=35 \text {) } \\
& \text { The typical situation } \\
& \text { is a majority of pions } \\
& \text { to be rejected. } \\
& \text { As it turns out, one } \\
& \text { gets } 80 \% \text { purity for } \\
& N(H T) \geq 7
\end{aligned}
$$

Problem 5.1

Looking at the fit for the data in Figure 5 we can see that we get χ^{2} of 31.29 with 9 degrees of freedom. Yielding a χ^{2}-probability of 0.0003 , not a good fit, I'm sure that we can do better! Lets look!

TROELS HAR UDFORDRET DIG TIL D-D-D-D-D-DUUUUUEEEEEEELLL! "Using alternative hypotheses with a maximum of 3 parameters, make my day!" Troels C. Petersen

The mean is consistent with zero: 0.10 ± 0.08

The Gaussian fit is easy, but doesn't fit: $p=0.0003$

Note that any PDF can be assumed to have a mean of zero!

Problem 5.1

Looking at the fit for the data in Figure 5 we can see that we get χ^{2} of 31.29 with 9 degrees of freedom. Yielding a χ^{2}-probability of 0.0003 , not a good fit, I'm sure that we can do better! Lets look!

TROELS HAR UDFORDRET DIG TIL D-D-D-D-D-DUUUUUEEEEEEELLL! "Using alternative hypotheses with a maximum of 3 parameters, make my day!" Troels C. Petersen

Raw data fitted with a Gauss and a Cosine
The mean is consistent with zero: 0.10 ± 0.08

The Gaussian fit is easy, but doesn't fit: $\mathrm{p}=0.0003$

Note that any PDF can be assumed to have a mean of zero!

Problem 5.2

Final Comments

