Applied Statistics

Binomial, Poisson, and Gaussian

Troels C. Petersen (NBI)

"Statistics is merely a quantization of common sense"

Probability Density Functions

A Probability Density Function (PDF) $f(x)$ describes the probability of an outcome x :
probability to observe x in the interval $[x, x+d x]=f(x) d x$
PDFs are required to be normalized:

$$
\int_{S} f(x) d x=1
$$

The expectation value (aka. mean) and the variance (i.e. standard deviation squared) are then defined as follows:

$$
\begin{gathered}
\mu=\int_{-\infty}^{\infty} x f(x) d x \\
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
\end{gathered}
$$

Probability Density Functions

The number of PDFs is infinite, and nearly so is the list of known ones:

Dscreve distroutions (edt source ledit beta)

With firite support bedr sourke I odit bera

The Bemoull dstroution, which takes value 1 with The flademacher distroution, which takes value 1 The binomal dasrbution, which deveribes the num The beta-binomial distribution, which deserbes the The degenerate dastrbution a! x. where X is cena: random varables in the same formalisn.
The discrete unilorm distribution, where all elemert shufled deck.
The hypergeometric distribution, which describes : there is no replacement.
The Poisson binomial distribution, which describes Fisher's noncentril hypeopeometric distrbution Whalenius' noncentral hyperpeometic distroution Berlonds isw, which descrbes the frequency of th

Whth irfinite support [adt source I odt beta]

- The beta negutive binomal datribution

The Bokxmann distrbution, a diserete distribution il analogue. Special castes include:

- The Obbe distroution

-The Maxwel--boltamann distrbution
The Borel dstribution
The extended regative binomial distribution
The extended hypergeometric distrbution
The generalized log-series distrbution
The generalaed nomal distribution
The geometric distribution a discrete distribution w
The hypergeonetric distribution
The logaritrmic (seres) distrbution
The negative binomial distribution or Pascal dstro The parabolic fractal distribution
The Poisson distrbution, which deseribes a very ls Poisson, the hyper.Poisson, the general Poisson to

- The Conelyy-Maxwel-Poisson distribution, a th The Polya-Eggerberger divibution
The Sketlan distroution, the distribution of the difs The skew ellptical distroution
The skew nomal distroution
The Yulo-Simón distroution
The reta distribution has uses in appled statistics Zpla law or the Zpt divrbution. A discrete powerThe Zpl-Murdebist law is a discsete power law dis

Continuous dssrbutions (edt sourcel edt beta)

Supported on a bourded interval [edt tourte I edt

 The Avesine distrbution on $|\mathrm{a}, \mathrm{b}|$, which is a soec The Bera distroution on [0,1], of which the unfom The Logtnomul datroution on (0.1).The Diase diets finction athough not strictly a for but the notation seats it as it it were a cortinubul The continuous unform distrbution on $|a . S|$. when - The nectargalur distrbution is a unlom distrb The inein-Hall distroution is the distribution of the The Kens datroution on the thee-dimertional spe The Kuraraswarry distrbution is as versatie as t. The loguitionic davrbution (oortinuous) The PLFIT distribution is a spepoal case of the bet The rassed cosine denvibution on $[p-s, \mu+4]$ The neciprocal distrbution
The triangular distribution on [a b] a special cast The luncated nomal dintrbution on [a, b].
The U-quadratic datribution on (a b)
The won Mises ditribution on the ciscle.
The von Mses-fiaher datroution on the N-dimens
The Whener sericicle distrbution is impoorant int
Supported on semi-indivie intervais. usally [0. $=$]
The Beta perme distbution
The Birbaum-Saunders distroution, also known The ev distrbution

- The noncentral of diviloution

The elv-squared distroution, which is the sum of : , The incerse-en-sgatred danclution

- The nonceritral ch-squared distrbution

The Souledinverse-ch-sovared davibution
The Dagurn datribution
The exponertial dastibution which describes the The Fidatroution, which is tee distrbution of the rato of two ch-squared varates which aye not no

- The noncertral F-distrbution

Faner's a-bistrovion
The locied nomal davibution
The Foichut distribution
The Oamm distrbution, uhich describes the time
The Eflang distroution which is a special cas
The inverse-gumma distrbution
The generalized Pareto distrbution
The Oammaomeetz distribution
The Oomperta distrbution
The hat-nomel distribution

The inverne Onatro dingovion
The inverne Gasasian datroution, alus kn The Livy datrovtion
The log Cauchy ditritution
The log-gavera divitution The log-taplace divibution The log-Laplace disirbution The loglogiste datroution
The logromel datrbution devorbing var The Minag-Leller datrbution The Nakagari datrbution The Pureto distrbution or "power law" das The Furrion Type ill dantbution The phased biexponertial dinabution is c The phased b-Wpibul diatrbution The Ruyleigh distribution
The Fivleigh mature distrbution The fice distrbution
The antied Comperta dirtroution
The type-2 Ounbel distribution
The Wbibul ditrbulion or Reain Pumbler grinding, milling and cruthing operatona.

iupported on the whole real lire [edt sou

The Behvens-Fwher distrbution, which ant The Cavichy datroution an example of a mesonance energy distribution, imeact and Gemeltix distrbution
The Exponertially moditied Gauswian distir The Fisher-Topett, estreme valut. or log The Gurbel datrbution, a apecial cas Faher's a-dstribution
The geverniased logistie distribution The geseraliced nomal disrbution
The peometric stible distrbution
The Hobyrak distibution an example of
The typentele datribution
The typerbole securt distrbution
The Johvion su dirrovion
The Landav distribution
Tre Luplace distrbution
The Livy skees alpha-stable datribution or diatroution Livy datroution and noerul a The Limik distribution
The logatic datrifution
The mas-Airy divirbution
The nomral distribution also calted the Oa ndeperdere, idertically distrbuted varabi The Nomal-exponertial-gamma datroution The Peanson Type IV distroution (uet Per The sikew noerel distrovion

Siuders 1dinvibion utilu for estimuing The noncentely Idinubution.
The trete-10 wrien dintioution
The Vogit dstrbution or Voigh probe, is pea The Gisumian mins eaponertiel distibutionit

With variable support (edt source l edt nera) The perenilisd acceme valite distifution hat paraneter
The generileed Purvo dstribution has a supd The Thier lurbod distroution is ether suppo The Wukeby distribution
Mxed dscente/oentnaous ditrbutions [edi

- The rectied Oavisian distrbuton molates ra

Joint distrbutions [wid sourbe l eirt betal
For try set of independert medon varables the
Tree er more randon variables on Pe wame sw
The Drehuet distrbution a pereralasion of st The [aens's sarpling formis is a probubily The Daiding-Nichols mosel
The mutinonial distribution a pereralastons The malivarate nomal distrbution, a general
The regutive rultromial ditrbution a genera
The pereralised mali urite loggn, a penera
Matriwnalued duvibutions (edt sourse I edt E
The Wahurt datrbution
The inverse-Wahurt datribution
The mutrix nomul distrbito
The mutrix 1 -Sutrbuion
Non-numerc distrbutons [edil wource I edi I
The categorical divtroution
neveton datrbution
Mrotlenebus dstrbutions [est soure i est
The Cartor divnibution
The gereralaed logstie distribution fanty
The Peanon dstrbution tavily
The phasetrpe distrbution

And surely more!

Probability Density Functions

An almost complete list of those we will deal with in this course is:

- Gaussian (aka. Normal)
- Poisson
- Binomial (perhaps also Multinomial)
- Students t-distribution
- Uniform
- ChiSquare
- Exponential

You should already know most of these, and the rest will be explained.

Binomial, Poisson, Gaussian

$$
f(n ; N, p)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n}
$$

Given \mathbf{N} trials each with \mathbf{p} chance of success, how many successes n should you expect in total?

This distribution is... Binomial:

$$
f(n ; N, p)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n}
$$

Mean $=\mathrm{Np}$
Variance $=N p(1-p)$

This means, that the error on a fraction $f=n / N$ is:

$$
\sigma(f)=\sqrt{\frac{f(1-f)}{N}}
$$

$\mathrm{n}=50$
$\mathrm{p}=0.8$

Binomial, Poisson, Gaussian

You count 100 cars, and see 15 red cars. What is your estimate of the fraction (i.e. probability) of red cars and its uncertainty?
a) 0.150 ± 0.050
b) 0.150 ± 0.026
c) 0.150 ± 0.036
d) 0.125 ± 0.030
e) 0.150 ± 0.081

From previous page: $\sigma(f)=\sqrt{\frac{f(1-f)}{N}}$
A friend tells you, that 8% of the cars on Blegdamsvej are red. What is the chance of that? Could he be right?

Binomial, Poisson, Gaussian

You count 100 cars, and see 15 red cars. What is your estimate of the fraction (i.e. probability) of red cars and its uncertainty?
a) 0.150 ± 0.050
b) 0.150 ± 0.026

$$
(0.150-0.080) / 0.036=1.9 \sigma
$$

c) 0.150 ± 0.036
d) 0.125 ± 0.030
e) 0.150 ± 0.081

From previous page: $\sigma(f)=\sqrt{\frac{f(1-f)}{N}}$
A friend tells you, that 8% of the cars on Blegdamsvej are red. What is the chance of that? Could he be right?

Binomial, Poisson, Gaussian

Requirements to be Binomial:

- Fixed number of trials, N
- Independent trials.
- Only two outcomes (success / failure).
- Constant probability of success / failure.

If number of possible outcomes is more than two \Rightarrow Multinomial distribution.

Examples of Binomial experiments:

- Tossing a coin 20 times counting number of tails.
- Asking 200 people if they watch sports on TV.
- Rolling a die to see if a 6 appear (Multinomial for all outcomes!).
- Asking 100 die-hards from Enhedslisten, if they would vote for Konservative at the next election!

Examples which aren't Binomial experiments:

- Rolling a die until a 6 appears (not fixed number of trials).
- Drawing 5 cards for a poker hand (no replacement \Rightarrow not independent)

Binomial, Poisson, Gaussian

If $\mathrm{N} \rightarrow \infty$ and $\mathrm{p} \rightarrow 0$, but $\mathrm{Np} \rightarrow \lambda$ then a Binomial approaches a Poisson:

$$
f(n ; \nu)=\frac{\nu^{n}}{n!} e^{-\nu}
$$

In reality, the approximation is already quite good at e.g. $\mathrm{N}=50$ and $\mathrm{p}=0.1$.

The Poisson distribution only has one parameter, namely λ. Mean $=\lambda$
Variance $=\lambda$
So the error on a number is...

...the square root of that number!

Binomial, Poisson, Gaussian

In reality, the approximation is already quite good at e.g. $\mathrm{N}=50$ and $\mathrm{p}=1$.

The Poisson distribution only has one parameter, namely λ.
Mean = 1
Va aice $=\lambda$
So the error on a number is...

...the square root of that number!

The error on a
 (Poisson) number... is the square root of that number!!!

Note: The sum of two Poissons with λ_{a} and λ_{b} is a new Poisson with $\lambda=\lambda_{\mathrm{a}}+\lambda_{\mathrm{b}}$. (See Barlow pages 33-34 for proof)

Binomial, Poisson, Gaussian

Last year Denmark had 180 deaths in traffic. What is roughly the uncertainty on this number?
a) 5
b) 9
c) 14
d) 25
e) Cannot be determined from the information given.

Binomial, Poisson, Gaussian

If $\lambda \rightarrow \infty$ and many other cases...

Binomial, Poisson, Gaussian

If $\lambda \rightarrow \infty$ and many other cases...
...and for $\lambda, 20$ is enough!
Poisson and Gaussian distribution comparison

Binomial, Poisson, Gaussian

If $\lambda \rightarrow \infty$ and many other cases...
...and for $\lambda, 20$ is enough!
Poisson and Gaussian distribution comparison

Binomial, Poisson, Gaussian

 "If the Greeks had known it, they would have deified it."
"If the Greeks had known it, they would have deified it. It reigns with serenity and in complete self-effacement amids the wildest confusion. The more huge the mob and the greater the apparent anarchy, the more perfect is its sway. It is the supreme Law of Unreason. Whenever a large sample of chaotic elements are taken in hand and marshaled in the order of their magnitude, an unsuspected and most beautiful form of regularity proves to be latent all along." [Karl Pearson]

Binomial, Poisson, Gaussian

The Gaussian defines

 the way we consider uncertainties.| Range | Inside | Outside |
| :--- | ---: | ---: |
| $\pm 1 \sigma$ | $\mathbf{6 8} \%$ | 32% |
| $\pm 2 \sigma$ | $\mathbf{9 5} \%$ | 5% |
| $\pm 3 \sigma$ | $\mathbf{9 9 . 7} \%$ | 0.3% |
| $\pm 5 \sigma$ | 99.99995% | 0.00005% |

