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1.1

Generally usefull stuff:

f(x) = x · exp(−x) (1)

f ′(x) = (x− 1) · exp(−x) (2)

f ′′(x) = (x− 2) · exp(−x) (3)

F (x) = − exp(−x) · (x+ 1) (4)

Mean m

m =

∞∫
0

fm(x) dx, with fm(x) = x · f(x) (5)

Fm(x) = − exp(−x) ∗ (x2 + 2x+ 2) (6)

m = lim
a→∞

Fm(a)− Fm(0) (7)

= lim
a→∞

2− exp(−x) ∗ (x2 + 2x+ 2) = 2 (8)

Mode e

Three conditions have to be fulfilled for any value e to be a maximum:

f ′(e) = (e− 1) · exp(−e) = 0 (9)

f ′′(e) = (e− 2) · exp(−e) < 0 (10)

e > 0 (11)

⇒ e ∈ {1} (12)

Since there is only one maximum, it is at the same time the mode.

Median c

0.5 =

c∫
0

f(x) dx = F (c)− F (0) (13)

⇒ 0.5 = (c+ 1) · exp(−c) (14)

c > 0 (15)

c ≈ 1.67835 (16)

The right hand side of 14 is a transcendental function of c. See numerical code
for solution.
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RMS r

r2 =

∞∫
0

fr(x) dx, with fr(x) = (x−m)2 · f(x) (17)

Fr(x) = − exp(−x) ∗ (x2 − x2 + 2x+ 2) (18)

r2 = lim
a→∞

Fr(a)− Fr(0) = Fr(0) = 2 (19)

⇒ r =
√

2 (20)

1.2

Assuming a binomial process with probability of success (hitting the city) p =
0.02 in each of the n = 100 trials. The probability P100,0.02,0 of zero successes
k = 0 is:

P100,0.02,0 =
n!

k! · (n− k)!
· pk · (1− p)n−k ≈ 0.13262 (21)

The number of trials necessary to have no sucesses with a probability of less
than 1− 0.95 is bounded by the following inequality:

1− 0.95 > Pn,0.02,0 =
n!

k! · (n− k)!
· pk · (1− p)n−k (22)

⇒ 0.05 > (1− p)n = 0.98n (23)

⇒ n > 148.284 (24)

At least n = 149 trials are necessary to have at least one hit with a confidence
of 0.95.

1.3

The drop in number of deaths d and injuries i are:

1− d2012
d2011

= 1− 167

220
≈ 0.241 = 24.1% (25)

1− i2012
i2011

= 1− 3611

4039
≈ 0.106 = 10.6% (26)

The variance on two incident numbers n1, n2 is (assuming a Poisson process)
the same as the numbers themselves. The variance on the difference is the
sum of the individual differences. It follows that the error on the difference is
σn =

√
|n1 + n2|. The ratio of differences and errors for d and i are:

|d1 − d2|
σd

≈ 2.7 (27)

|i1 − i2|
σi

≈ 4.9 (28)
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This means both drops are likely to reflect a change in rates (with more than
0.99 confidence).
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2.1

v̄ = (97± 4)ms−1 (29)

Ekin = (1300± 200)J (30)

Ekin,corr = (1280± 120)J (31)

The last measurement deviates about 2σ from the mean. This is not a surprising
occurence in a series of 7 measurements.

2.2

Note that for θ = 1.54 ± 0.02 error propagation using the derivative is not
suitable for the tan, because the derivative changes to quickly.

For θ = 0.54± 0.02 : (32)

sin(θ) = 0.51± 0.02 (33)

cos(θ) = 0.857± 0.010 (34)

tan(θ) = 0.60± 0.03 (35)

For θ = 1.54± 0.02 : (36)

sin(θ) = 0.9995± 0.00006 (37)

cos(θ) = 0.03± 0.02 (38)

tan(θ) = 32±61
12 (39)

2.3

n2 = 1.50± 0.02 (40)

2.4

∆NN0
= ∆N0 exp(−t/τ) (41)

∆Nτ = ∆τ ·N0 · t exp(−t/τ)/τ2 (42)

∆NN0
= ∆Nτ (43)

⇒ ∆N0 exp(−t/τ) = ∆τ ·N0 · t exp(−t/τ)/τ2 (44)

⇒ t/τ =
τ∆N0

N0∆τ
= 1 (45)
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3

1 =

2∫
−1

a x2 dx = 3a (46)

⇒ a =
1

3
(47)

mean: m =

2∫
−1

a x3 dx =
15a

4
=

5

4
(48)

square of width: w2 =

2∫
−1

(x−m)2a x2 dx = m2 − 5

2
m+

11

5
=

51

80
(49)

(50)

To generate random numbers according to this distribution, one can calculate
the cumulative distribution c(x) = 1

9 (x3 + 1) and invert it:

x(c) =

{
(9c− 1)

1
3 if x > 1

9

−(1− 9c)
1
3 otherwise

(51)

A uniformly distributed random variable c on the interval [0, 1] can now be
transformed into the desired result using x(c).
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The histogram above shows a sample of a thousand values from the the sum of 20
distributions f(x) and a gaussian with the same width and mean. The p-value
for the hypothesis of independence of a Chi-square contingency test of the two
samples is 0.41 and the respective means are 25.02± 0.12 for the gaussian and
25.04±0.11 for the convolution of f(x). Neither the difference and uncertainties
of the means nor the Chi-square test indicate that the hypothesis of equality of
the two underlying pdfs can be rejected with a confidence of at least 0.95.
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4.1

The Wald-Wolfowitz test on the residuals of the background fit returns 103 and
an expected number of runs of 100 ± 7. This does not indicate, that the fit is
insufficient (runs and expectation are consistent).

The significance of the largest gaussian (shown in the graph below) is: 3.3σ
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4.1

The third result was removed, because its distance to the mean corresponds
to ≈ 20σ. The true value is 2.2µs, the unweighted mean of the results is
(1.99 ± 0.06)µs, the weighted mean is (1.91 ± 0.03)µs. Both are completely
inconsistent with the true value (by ≈ 10σ). Using the weighted mean and
uncertainty as best combined measurement, yields χ2 ≈ 21.2 and p ≈ 0.006.
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The fit quality of the first hypothesis is very bad (χ2 ≈ 21.6, p ≈ 0.00061).
Adding an offset time as a parameter improves the fit enough to be reasonable
(χ2 ≈ 2.16, p ≈ 0.71. Weighing the two probabilities for obtaining a χ2 this bad
or worse against each other makes me ≈ 0.99914 certain that the hypothesis of
an exact release time t0 = 0 should be rejected.
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