Florian Uekermann

1

1.1

Generally usefull stuff:

$$
\begin{align*}
f(x) & =x \cdot \exp (-x) \tag{1}\\
f^{\prime}(x) & =(x-1) \cdot \exp (-x) \tag{2}\\
f^{\prime \prime}(x) & =(x-2) \cdot \exp (-x) \tag{3}\\
F(x) & =-\exp (-x) \cdot(x+1) \tag{4}
\end{align*}
$$

Mean m

$$
\begin{align*}
m & =\int_{0}^{\infty} f_{m}(x) d x, \text { with } f_{m}(x)=x \cdot f(x) \tag{5}\\
F_{m}(x) & =-\exp (-x) *\left(x^{2}+2 x+2\right) \tag{6}\\
m & =\lim _{a \rightarrow \infty} F_{m}(a)-F_{m}(0) \tag{7}\\
& =\lim _{a \rightarrow \infty} 2-\exp (-x) *\left(x^{2}+2 x+2\right)=2 \tag{8}
\end{align*}
$$

Mode e

Three conditions have to be fulfilled for any value e to be a maximum:

$$
\begin{align*}
f^{\prime}(e) & =(e-1) \cdot \exp (-e)=0 \tag{9}\\
f^{\prime \prime}(e) & =(e-2) \cdot \exp (-e)<0 \tag{10}\\
e & >0 \tag{11}\\
\Rightarrow e & \in\{1\} \tag{12}
\end{align*}
$$

Since there is only one maximum, it is at the same time the mode.

Median c

$$
\begin{align*}
0.5 & =\int_{0}^{c} f(x) d x=F(c)-F(0) \tag{13}\\
\Rightarrow 0.5 & =(c+1) \cdot \exp (-c) \tag{14}\\
c & >0 \tag{15}\\
c & \approx 1.67835 \tag{16}
\end{align*}
$$

The right hand side of 14 is a transcendental function of c. See numerical code for solution.

RMS r

$$
\begin{align*}
r^{2} & =\int_{0}^{\infty} f_{r}(x) d x, \text { with } f_{r}(x)=(x-m)^{2} \cdot f(x) \tag{17}\\
F_{r}(x) & =-\exp (-x) *\left(x^{2}-x^{2}+2 x+2\right) \tag{18}\\
r^{2} & =\lim _{a \rightarrow \infty} F_{r}(a)-F_{r}(0)=F_{r}(0)=2 \tag{19}\\
\Rightarrow r & =\sqrt{2} \tag{20}
\end{align*}
$$

1.2

Assuming a binomial process with probability of success (hitting the city) $p=$ 0.02 in each of the $n=100$ trials. The probability $P_{100,0.02,0}$ of zero successes $k=0$ is:

$$
\begin{equation*}
P_{100,0.02,0}=\frac{n!}{k!\cdot(n-k)!} \cdot p^{k} \cdot(1-p)^{n-k} \approx 0.13262 \tag{21}
\end{equation*}
$$

The number of trials necessary to have no sucesses with a probability of less than $1-0.95$ is bounded by the following inequality:

$$
\begin{align*}
& \quad 1-0.95>P_{n, 0.02,0}=\frac{n!}{k!\cdot(n-k)!} \cdot p^{k} \cdot(1-p)^{n-k} \tag{22}\\
& \Rightarrow 0.05>(1-p)^{n}=0.98^{n} \tag{23}\\
& \Rightarrow n>148.284 \tag{24}
\end{align*}
$$

At least $n=149$ trials are necessary to have at least one hit with a confidence of 0.95.

1.3

The drop in number of deaths d and injuries i are:

$$
\begin{align*}
& 1-\frac{d_{2012}}{d_{2011}}=1-\frac{167}{220} \approx 0.241=24.1 \% \tag{25}\\
& 1-\frac{i_{2012}}{i_{2011}}=1-\frac{3611}{4039} \approx 0.106=10.6 \% \tag{26}
\end{align*}
$$

The variance on two incident numbers n_{1}, n_{2} is (assuming a Poisson process) the same as the numbers themselves. The variance on the difference is the sum of the individual differences. It follows that the error on the difference is $\sigma_{n}=\sqrt{\left|n_{1}+n 2\right|}$. The ratio of differences and errors for d and i are:

$$
\begin{align*}
& \frac{\left|d_{1}-d_{2}\right|}{\sigma_{d}} \approx 2.7 \tag{27}\\
& \frac{\left|i_{1}-i_{2}\right|}{\sigma_{i}} \approx 4.9 \tag{28}
\end{align*}
$$

This means both drops are likely to reflect a change in rates (with more than 0.99 confidence).

2

2.1

$$
\begin{align*}
\bar{v} & =(97 \pm 4) m s^{-1} \tag{29}\\
E_{k i n} & =(1300 \pm 200) J \tag{30}\\
E_{k i n, \text { corr }} & =(1280 \pm 120) J \tag{31}
\end{align*}
$$

The last measurement deviates about 2σ from the mean. This is not a surprising occurence in a series of 7 measurements.

2.2

Note that for $\theta=1.54 \pm 0.02$ error propagation using the derivative is not suitable for the tan, because the derivative changes to quickly.

$$
\begin{align*}
& \text { For } \theta=0.54 \pm 0.02: \tag{32}\\
& \qquad \begin{aligned}
& \sin (\theta)=0.51 \pm 0.02 \\
& \cos (\theta)=0.857 \pm 0.010 \\
& \tan (\theta)=0.60 \pm 0.03 \\
& \text { For } \theta=1.54 \pm 0.02: \\
& \sin (\theta)=0.9995 \pm 0.00006 \\
& \cos (\theta)=0.03 \pm 0.02 \\
& \tan (\theta)=32 \pm{ }_{12}^{61}
\end{aligned} \tag{33}
\end{align*}
$$

2.3

$$
\begin{equation*}
n_{2}=1.50 \pm 0.02 \tag{40}
\end{equation*}
$$

2.4

$$
\begin{align*}
\Delta N_{N_{0}} & =\Delta N_{0} \exp (-t / \tau) \tag{41}\\
\Delta N_{\tau} & =\Delta \tau \cdot N_{0} \cdot t \exp (-t / \tau) / \tau^{2} \tag{42}\\
\Delta N_{N_{0}} & =\Delta N_{\tau} \tag{43}\\
\Rightarrow \Delta N_{0} \exp (-t / \tau) & =\Delta \tau \cdot N_{0} \cdot t \exp (-t / \tau) / \tau^{2} \tag{44}\\
\Rightarrow t / \tau & =\frac{\tau \Delta N_{0}}{N_{0} \Delta \tau}=1 \tag{45}
\end{align*}
$$

3

$$
\begin{gather*}
1=\int_{-1}^{2} a x^{2} d x=3 a \tag{46}\\
\Rightarrow a=\frac{1}{3} \tag{47}\\
\text { mean: } m=\int_{-1}^{2} a x^{3} d x=\frac{15 a}{4}=\frac{5}{4} \tag{48}\\
\text { square of width: } w^{2}=\int_{-1}^{2}(x-m)^{2} a x^{2} d x=m^{2}-\frac{5}{2} m+\frac{11}{5}=\frac{51}{80} \tag{49}
\end{gather*}
$$

To generate random numbers according to this distribution, one can calculate the cumulative distribution $c(x)=\frac{1}{9}\left(x^{3}+1\right)$ and invert it:

$$
x(c)=\left\{\begin{array}{lc}
(9 c-1)^{\frac{1}{3}} & \text { if } x>\frac{1}{9} \tag{51}\\
-(1-9 c)^{\frac{1}{3}} & \text { otherwise }
\end{array}\right.
$$

A uniformly distributed random variable c on the interval $[0,1]$ can now be transformed into the desired result using $x(c)$.

The histogram above shows a sample of a thousand values from the the sum of 20 distributions $f(x)$ and a gaussian with the same width and mean. The p-value for the hypothesis of independence of a Chi-square contingency test of the two samples is 0.41 and the respective means are 25.02 ± 0.12 for the gaussian and 25.04 ± 0.11 for the convolution of $f(x)$. Neither the difference and uncertainties of the means nor the Chi-square test indicate that the hypothesis of equality of the two underlying pdfs can be rejected with a confidence of at least 0.95.

4

4.1

The Wald-Wolfowitz test on the residuals of the background fit returns 103 and an expected number of runs of 100 ± 7. This does not indicate, that the fit is insufficient (runs and expectation are consistent).

The significance of the largest gaussian (shown in the graph below) is: 3.3σ

4.1

The third result was removed, because its distance to the mean corresponds to $\approx 20 \sigma$. The true value is $2.2 \mu s$, the unweighted mean of the results is $(1.99 \pm 0.06) \mu s$, the weighted mean is $(1.91 \pm 0.03) \mu s$. Both are completely inconsistent with the true value (by $\approx 10 \sigma$). Using the weighted mean and uncertainty as best combined measurement, yields $\chi^{2} \approx 21.2$ and $p \approx 0.006$.

5

The fit quality of the first hypothesis is very bad $\left(\chi^{2} \approx 21.6, p \approx 0.00061\right)$. Adding an offset time as a parameter improves the fit enough to be reasonable $\left(\chi^{2} \approx 2.16, p \approx 0.71\right.$. Weighing the two probabilities for obtaining a χ^{2} this bad or worse against each other makes me ≈ 0.99914 certain that the hypothesis of an exact release time $t_{0}=0$ should be rejected.

