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1.1

Generally usefull stuff:

()
fl(z) = (x— 1) exp(-2)
1"(@) = (@ —2) - exp(—a)
Fla) = —exp(—2) - (2 +1)
Mean m
m = [ (e da, with f(o) =2 f(a)
0
Fo(z) = —exp(—z) * (2% + 22 + 2)
m= ali)ngo Fp.(a) — F,(0)
= aLrgQQ—eXp(—x) w (22 +224+2)=2
Mode ¢

Three conditions have to be fulfilled for any value e to be a maximum:

f'(e) =(e—1)-exp(—e) =0
f"(e) = (e = 2) - exp(—e) <0
e>0
=ec{l}

Since there is only one maximum, it is at the same time the mode.

Median ¢

0.5= [ f(z)dx = F(c) — F(0)
/

=0.5=(c+1): exp(—c)
c>0
c~ 1.67835
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The right hand side of 14 is a transcendental function of ¢. See numerical code

for solution.



RMS r

r? = /fr(x) dx, with f.(z) = (x —m)?- f(z) (17)
F.(x) = —exp(—x) * (2% — 2 + 2z + 2) (18)
r? = lim F,(a) — F,(0) = F.(0) =2 (19)

=2 (20)

1.2

Assuming a binomial process with probability of success (hitting the city) p =
0.02 in each of the n = 100 trials. The probability Pip,0.02,0 of zero successes
k=0is:
P __n FL(1—p)"F & 0.13262 (21)
100,0.02,0 = [ (n — k:)! b p ~ U.
The number of trials necessary to have no sucesses with a probability of less
than 1 — 0.95 is bounded by the following inequality:

n!
1-0. P, = — _pFa-pnF (22
0.95 > Py 0.02,0 EECEYD] p-(1—-p) (22)
= 0.05> (1 —p)™ = 0.98" (23)
= n > 148.284 (24)

At least n = 149 trials are necessary to have at least one hit with a confidence
of 0.95.

1.3
The drop in number of deaths d and injuries ¢ are:
1— =1——~0241=24.1 25
d2o11 220 % (25)
i2012 3611
1-— =1-—— ~0.106 = 10.6% 26
i2011 4039 ! (26)

The variance on two incident numbers n1,no is (assuming a Poisson process)
the same as the numbers themselves. The variance on the difference is the
sum of the individual differences. It follows that the error on the difference is
on = +/|n1 + n2|. The ratio of differences and errors for d and i are:

|dy — da
od

i1 — da]
g;

~ 2.7 (27)

~ 4.9 (28)



This means both drops are likely to reflect a change in rates (with more than
0.99 confidence).

2
2.1
0= (97 +4)ms™! (29)
Eyin = (1300 + 200)J (30)
Brin.corr = (1280 £ 120)J (31)

The last measurement deviates about 20 from the mean. This is not a surprising
occurence in a series of 7 measurements.

2.2

Note that for & = 1.54 + 0.02 error propagation using the derivative is not
suitable for the tan, because the derivative changes to quickly.

For 6 = 0.54 = 0.02 : (32)
sin(6) = 0.51 £ 0.02 (33)
cos(8) = 0.857 = 0.010 (34)
tan(6) = 0.60 + 0.03 (35)
For 6 = 1.54 + 0.02 : (36)
sin(6) = 0.9995 + 0.00006 (37)
cos(6) = 0.03 £ 0.02 (38)
tan(f) = 32493 (39)
2.3
no = 1.50 = 0.02 (40)
24
ANy, = ANy exp(—t/T) (41)
AN, = At - Ny - texp(—t/1)/72 (42)
ANy, = AN, (43)
= ANyexp(—t/7) = AT - Ny - texp(—t/7)/72 (44)
TANQ
= =1 4
=t/ NoAr (45)
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(49)

(50)

To generate random numbers according to this distribution, one can calculate

the cumulative distribution ¢(z) = §(2% + 1) and invert it:

—(1—=9¢)5  otherwise

m(c):{(%—l)é ifx>é

(51)

A uniformly distributed random variable ¢ on the interval [0, 1] can now be

transformed into the desired result using z(c).
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The histogram above shows a sample of a thousand values from the the sum of 20
distributions f(x) and a gaussian with the same width and mean. The p-value
for the hypothesis of independence of a Chi-square contingency test of the two
samples is 0.41 and the respective means are 25.02 + 0.12 for the gaussian and
25.04+0.11 for the convolution of f(x). Neither the difference and uncertainties
of the means nor the Chi-square test indicate that the hypothesis of equality of
the two underlying pdfs can be rejected with a confidence of at least 0.95.

4

4.1

The Wald-Wolfowitz test on the residuals of the background fit returns 103 and
an expected number of runs of 100 + 7. This does not indicate, that the fit is
insufficient (runs and expectation are consistent).

The significance of the largest gaussian (shown in the graph below) is: 3.3¢
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4.1

The third result was removed, because its distance to the mean corresponds
to &~ 200. The true value is 2.2us, the unweighted mean of the results is
(1.99 £ 0.06) s, the weighted mean is (1.91 £ 0.03)us. Both are completely
inconsistent with the true value (by &~ 100). Using the weighted mean and
uncertainty as best combined measurement, yields x? ~ 21.2 and p ~ 0.006.
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The fit quality of the first hypothesis is very bad (x? ~ 21.6, p ~ 0.00061).
Adding an offset time as a parameter improves the fit enough to be reasonable
(x? ~ 2.16, p ~ 0.71. Weighing the two probabilities for obtaining a x? this bad
or worse against each other makes me ~ 0.99914 certain that the hypothesis of
an exact release time ty = 0 should be rejected.



