## Applied Statistics Correlations



## Correlation



## Correlation

North Atlantic Oscillation (NAO) Effects


## Correlation

Recall the definition of the Variance, V:
$V=\sigma^{2}=\frac{1}{N} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}=E\left[(x-\mu)^{2}\right]=E\left[x^{2}\right]-\mu^{2}$
Likewise, one defines the Covariance, $\mathbf{V}_{\mathrm{xy}}$ :
$V_{x y}=\frac{1}{N} \sum_{i}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)=E\left[\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)\right]$
"Normalizing" by the widths, gives the (linear) correlation:

$$
\rho_{x y}=\frac{V_{x y}}{\sigma_{x} \sigma_{y}} \quad \sigma(\rho) \simeq \sqrt{\frac{1}{n}\left(1-\rho^{2}\right)^{2}+O\left(n^{-2}\right)}
$$

## Correlation

Correlations in 2D are in the Gaussian case the "degree of ovalness"!

| 1.0 | 0.8 | 0.4 | 0.0 | -0.4 | -0.8 | $-1.0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $4$ | , | 8. | $6$ |  |
| 1.0 | 1.0 | 1.0 | 0.0 | $-1.0$ | -1.0 | -1.0 |
| $6$ |  |  |  |  |  |  |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \% |  |  |  |  |  | \% |

Note how ALL of the bottom distributions have $\varrho=0$, despite obvious correlations!

## Correlation

The correlation matrix Vxy explicitly looks as:

$$
V_{x y}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12}^{2} & \cdots & \sigma_{1 N}^{2} \\
\sigma_{21}^{2} & \sigma_{22}^{2} & \cdots & \sigma_{2 N}^{2} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\sigma_{N}^{2} & \sigma_{N 2}^{2} & \cdots & \sigma_{N N}^{2}
\end{array}\right]
$$

Very specifically, the calculations behind are:

$$
V=\left[\begin{array}{cccc}
\mathrm{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right)\right] & \mathrm{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right] & \cdots & \mathrm{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{n}-\mu_{n}\right)\right] \\
\mathrm{E}\left[\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right] & \mathrm{E}\left[\left(X_{2}-\mu_{2}\right)\left(X_{2}-\mu_{2}\right)\right] & \cdots & \mathrm{E}\left[\left(X_{2}-\mu_{2}\right)\left(X_{n}-\mu_{n}\right)\right] \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{E}\left[\left(X_{n}-\mu_{n}\right)\left(X_{1}-\mu_{1}\right)\right] & \mathrm{E}\left[\left(X_{n}-\mu_{n}\right)\left(X_{2}-\mu_{2}\right)\right] & \cdots & \mathrm{E}\left[\left(X_{n}-\mu_{n}\right)\left(X_{n}-\mu_{n}\right)\right]
\end{array}\right]
$$

## Correlation and Information

Correlations influence results in complex ways!

They need to be taken into account, for example in Error Propagation!

Correlations may contain a significant amount of information.

We will consider this more when we play with multivariate analysis.


## Correlation example

## RELATING DENSITY AND VOTING PATTERNS IN U.S. CONGRESSIONAL DISTRICTS



POPULATION OF CONGRESSIONAL DISTRICT/SQUARE MILES

## (1) 올



## Correlation Vs. Causation

## "Com hoc ergo propter hoc"

(with this, therefore because of this)


## Correlation Vs. Causation

"Com hoc ergo propter hoc"
(with this, therefore because of this)


