(Time) series

- Sequence of data points over some parameter
 - Analysis methods can be applied to any data with some natural ordering
 - Main topic: Separation of signal components
 - Main goal: Predicting the future (model)

Components

Seasonal

Trend

Cyclic

• Irregular (noise)

Classical decomposition (~1920s)

- Additive: y = T + S + C + I
- Multiplicative: $y = T \cdot S \cdot C \cdot I$
- Recipe:
 - Find trend T and detrend: y' = y-T (y' = y/T)
 - Find seasonal comp. ...: y'' = y'-S (y''= y'/S)
 - Remainder consists of cyclic and irregular comp.
- We will focus on:
 - 2 detrending methods (moving avg. & fourier ana.)
 - A method for finding seasonal comp. (fourier ana.)
 - A method for finding cyclic comp. (autocorr.)

Detrending - Moving average

Average over a moving window of data

- Add weights if necessary:
 - Gaussian
 - Exponential
 - Triangle
 - Whatever you can think of

$$\hat{T}_t = \frac{1}{m} \sum_{j=-k}^k y_{t+j}$$

- Pro: Easy and robust
- Con: Will usually incorporate part of other comp. (median?)

Slime mould experiment

- Show: https://www.youtube.com/watch?v=GY_uMH8Xpy0
- Mention visible "vibrations" (~scale minute[s])
- What is a slime mould:
 - One cell, move stuff around inside
 - Contractions (almost periodic), pumping function
 - Microplasmodium does the same
- Preparations (and data aquisition):
 - Remove slime in centrifuge
 - Resuspend in growth medium on petri dish
 - Remove liquid after spreading
 - Put under light microscope
 - Wait and take pictures
- Analysis:
 - Do a lot of image processing to get a binary picture
 - Analyze boundary oscillations and analyze area oscillation

- Download 3 files:
 - images.json.gz data (explain data origin here!)
 - timeSeries.py main program
 - timeSeries_functions.py useful functions
- You will only write very short pieces of code
 - Don't write ROOT code (use DrawGraph, saves time)
 - Don't write your own functions (only fill in missing code)
 - Carefully read the comments on each function (save yourself a lot of time)
- All steps are explained in detail in the main program

• Work on the exercise until you have a moving average of the cell area:

Cell cross-section

Fast fourier transform (FFT)

- Algorithm for DFT
 - Fast! (scales linearly)
- Requires same distance
 - Interpolate if necessary
- Returns spectrum of

complex numbers over frequency

- Represents amplitude & phase in one number
- I am assuming fourier transforms are familiar
 - Tell me if I am wrong
 - Do you have any questions regarding this (technical stuff?)

Uses of FFT

- Transform; modify spectrum; transform back
- Compression
 - Identify important frequencies, delete the rest
- Detrending (similar to compression)
 - Separate into high and low frequencies
 - Low frequencies are trend (Low-pass filter)
 - High frequencies are detrended data (High-pass filter)
- Seasonal components are peaks frequency domain
 - Separate seasonal component by isolating peaks
 - Peaks are seasonal component
 - Rest is deseasonalized data
- Carefull: Not usefull for cyclic components
 - Reason: Phase shift between cycles

• Work on the exercise until you have applied a low pass filter to the cell area

What do you think?

Low Pass VS Moving Average

Cyclic (& irregular) component

- Any correlation without exact timing
 - Oscillations with phase shifts
 - Feedback of past data on current data
 - Flights (Peak of return flights after peak in outgoing ones)
 - Random walk (maximum step size, questionable if cyclic)
 - Influenza (higher chance for epidemics after quiet times)
- Hard to model
 - Correct model depends on exact mechanism

Autocorrelation

 Relationship between observations of the same variable at different times:

$$R(\tau) = \frac{\frac{1}{N-\tau} \sum_{t=1}^{N-\tau} (X_t - \mu) (X_{t+\tau} - \mu)}{\sigma^2}$$

• Confidence intervall: (

$$CI = \frac{\pm 2}{\sqrt{N-\tau}}$$

 Continue with the exercise until you computed the autocorrelation and the contraction frequency

Autoregressive model

- Suppose you found significant autocorrelation
- Assume random process with linear dependence on last few timesteps

$$X_{t} = c + \sum_{i=1}^{p} \varphi_{i} X_{t-i} + \epsilon_{t} \qquad \begin{array}{l} \varphi_{1}, \dots, \varphi_{p} : \text{model parameters} \\ \epsilon_{t} : \text{noise term} \end{array}$$

- Fit using the appropriate method for your noise term (least-squares for gaussian)
- Now that you have a model, you can use it to extrapolate (while propagating errors in each step)
- Combine this with other components by fitting their residuals