Solution for the Error Propagation exercise

The length and width of the table was measured to:

$$
L=3.5 \pm 0.4 \mathrm{~m} \quad W=0.8 \pm 0.2 \mathrm{~m}
$$

The $\underline{\text { Circumference, }} \underline{\text { Area }}$ and Diagonal and their errors are calulated as following (assuming no correlation):

$$
\begin{array}{rlrl}
C & =2 L+2 W & A & =L \cdot W \\
\sigma_{C} & =\sqrt{\left(2 \sigma_{L}\right)^{2}+\left(2 \sigma_{W}\right)^{2}} & \sigma_{A} & =\sqrt{\left(W \sigma_{L}\right)^{2}+\left(L \sigma_{W}\right)^{2}} \\
C & =8.6 \pm 0.9 \mathrm{~m} & A & =2.8 \pm 0.8 \mathrm{~m}
\end{array}
$$

$$
D=\sqrt{\left(\frac{L \sigma_{L}}{\sqrt{L^{2}+W^{2}}}\right)^{2}+\left(\frac{W \sigma_{W}}{\sqrt{L^{2}+W^{2}}}\right)^{2}}
$$

$$
D=3.6 \pm 0.4 \mathrm{~m}
$$

Now with correlation:

$$
\begin{gathered}
C=2 L+2 W \\
\sigma_{C}=\sqrt{\left(2 \sigma_{L}\right)^{2}+\left(2 \sigma_{W}\right)^{2}+\left(4 \sigma_{L W}\right)^{2}} \\
\sigma_{A}=L \cdot W \\
\left(W \sigma_{L}\right)^{2}+\left(L \sigma_{W}\right)^{2}+2 L W \sigma_{L W}^{2} \\
D=\sqrt{\left(\frac{L \sigma_{L}}{\sqrt{L^{2}+W^{2}}}\right)^{2}+\left(\frac{W \sigma_{W}}{\sqrt{L^{2}+W^{2}}}\right)^{2}+\frac{L W}{L^{2}+W^{2}} \sigma_{L W}^{2}}
\end{gathered}
$$

Recall that $\sigma_{L W}^{2}=V_{L W}$ and $\rho_{L W}=\frac{V_{L W}}{\sigma_{L} \sigma_{W}}$.
By knowing $\rho_{L W}=0.5$, we can calculate $V_{L W}$ and thereby find the errors with correlation:

$$
\begin{aligned}
& C=8.6 \pm 1.2 \mathrm{~m} \\
& A=2.8 \pm 0.8 \mathrm{~m} \\
& D=3.6 \pm 0.4 \mathrm{~m}
\end{aligned}
$$

