Applied Statistics
 Hypothesis Testing

Taking decisions

You are asked to take a decision or give judgement - it is yes-or-no.

Given data - how to do that best?

That is the basic question in hypothesis testing.
Trouble is, you may take the wrong decision, and there are TWO errors:

- The hypothesis is true, but you reject it (Type I).
- The hypothesis is wrong, but you accept it (Type II).

STATISTICAL DECISION:

Taking decisions

REALITY

STATISTICAL DECISION:	Do Not Reject Null Reject Null	Null is True	Null is False
		$1-\alpha$ Correct	β Type II error
		a Type I error	$1-\beta$ Correct

Taking decisions

The purpose of a test is to yield (calculable / predictable) distributions for the Null and Alternative hypotheses, which are as separated from each other as possible, to minimise α and β.
The likelihood ratio test is in general the best such test.

ROC-curves

The Receiver Operating Characteristic or just ROCcurve is a graphical plot of the sensitivity, or true positive rate, vs. false positive rate.

It is calculated as the integral of the two hypothesis distributions, and is used to evaluate the power of a test.

Often, it requires a testing data set to actually see how well a test is performing.

Dividing data, it can also detect overtraining!

Background efficiency

ROC-curves

The Receiver Operating

Characteristic or just ROCcurve is a graphical plot of the sensitivity, or true positive rate, vs. false positive rate.

It is calculated as the integral of the two hypothesis distributions, and is used to evaluate the power of a test.

Often, it requires a testing data set to actually see how well a test is performing.

Dividing data, it can also detect overtraining!

Useful ROC metrics

The performance of a test statistic is described fully by the ROC curve itself!
To summarise performance in one single number (i.e. easy to compare!), one used Area Under ROC curve.

Alternatively, people use:

- Signal eff. for a given background eff.
- Background eff. for a given signal eff.
- Youden's index (J), defined as shown in the figure.

The optimal selection depends entirely on your analysis at hand!

Example of ROC curves in use

Basic steps - distributions

Basic steps - ROC curves

Overall improvement

Testing procedure \&

Typical statistical tests

Testing procedure

1. Consider an initial (null) hypothesis, of which the truth is unknown.
2. State null and alternative hypothesis.
3. Consider statistical assumptions (independence, distributions, etc.)
4. Decide for appropriate test and state relevant test statistic.
5. Derive the test statistic distribution under null and alternative hypothesis. In standard cases, these are well known (Poisson, Gaussian, Student's t, etc.)
6. Select a significance level (α), that is a probability threshold below which null hypothesis will be rejected (typically from 5% (biology) and down (physics)).
7. Compute from observations/data (blinded) value of test statistic t.
8. From t calculate probability of observation under null hypothesis (\mathbf{p}-value).
9. Reject null hypothesis for alternative if p-value is below significance level.

Testing procedure

1. Consider an initial (null) hypothesis, of which the truth is unknown.
2. State null and alternative hypothesis.
3. Consider statistical assumptions (independence, distributions, etc.)
4. Decide for annmonriate toct and ctate relevant tect ctatictic
5. Derive In star
6. Select hypot
7. State hypothesis.
8. Set the criteria for a decision.
9. Compute the test statistic.
10. Comp 4. Make a decision.
11. From t t \qquad null

Example of hypothesis test

The spin of the newly discovered "Higgs-like" particle (spin 0 or 2?):

Neyman-Pearson Lemma

Consider a likelihood ratio between the null and the alternative model:

$D=-2 \ln$ likelihood for null model likelihood for alternative model

The Neyman-Pearson lemma (loosely) states, that this is the most powerful test there is.

In reality, the problem is that it is not always easy to write up a likelihood for complex situations!

However, there are many tests derived from the likelihood...

Likelihood ratio problem

While the likelihood ratio is in principle both simple to write up and powerful:

$D=-2 \ln$ likelihood for null model likelihood for alternative model

...it turns out that determining the exact distribution of the likelihood ratio is often very hard.
To know the two likelihoods one might use a Monte Carlo simulation, representing the distribution by an n-dimensional histogram (since our observable, x, can have n dimensions). But if we have M bins in each dimension, then we have to determine M^{n} numbers, which might be too much.

However, a convenient result (Wilk's Theorem) states that as the sample size approaches infinity, the test statistic D will be χ^{2}-distributed with $\mathbf{N}_{\text {dof }}$ equal to the difference in dimensionality of the Null and the Alternative (nested) hypothesis.
Alternatively, one can choose a simpler (and usually fully acceptable test)...

Common statistical tests

- One-sample test compares sample (e.g. mean) to known value: $z=\frac{\bar{x}-\mu_{0}}{\sigma} \sqrt{n}$ Example: Comparing sample to known constant ($\mu_{\text {exp }}=2.91 \pm 0.01 \mathrm{vs} \mathrm{c}=$.2.99).
- Two-sample test compares two samples (e.g. means).

Example: Comparing sample to control $\left(\mu_{\exp }=4.1 \pm 0.6\right.$ vs. $\left.\mu_{\text {control }}=0.7 \pm 0.4\right)$.

$$
z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-d_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

- Paired test compares paired member difference (to control important variables).

Example: Testing environment influence on twins to control genetic bias ($\mu_{\text {diff }}=0.81 \pm 0.29 \mathrm{vs}$. 0).

- Chi-squared test evaluates adequacy of model compared to data.

Example: Model fitted to (possibly binned) data, yielding p-value $=\operatorname{Prob}\left(\chi^{2}=45.9, \mathrm{~N}_{\mathrm{dof}}=36\right)=0.125$

- Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value $=0.87$

- Wald-Wolfowitz runs test is a binary check for independence.
- Fisher's exact test calculates p-value for contingency tables.
- F-test compares two sample variances to see, if grouping is useful.

Student's t-distribution

Discovered by William Gosset (who signed "student"), student's t-distribution takes into account lacking knowledge of the variance.

$$
\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{v}{2}\right)}\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

When variance is unknown, estimating it from sample gives additional error:
Gaussian: $z=\frac{x-\mu}{\sigma}$
Student's: $t=\frac{x-\mu}{\hat{\sigma}}$

Simple tests (Z- or T-tests)

- One-sample test compares sample (e.g. mean) to known value: $z=\frac{\bar{x}-\mu_{0}}{\sigma} \sqrt{n}$

Example: Comparing sample to known constant ($\mu_{\exp }=2.91 \pm 0.01$ vs. $\mathrm{c}=3.00$).

- Two-sample test compares two samples (e.g. means).

Example: Comparing sample to control ($\mu_{\exp }=4.1 \pm 0.6$ vs. $\mu_{\text {control }}=0.7 \pm 0.4$).

$$
z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-d_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

- Paired test compares paired member difference (to control important variables).

Example: Testing environment influence on twins to control genetic bias ($\mu_{\text {diff }}=0.81 \pm 0.29 \mathrm{vs} .0$).
Things to consider:

- Variance known (Z-test) vs. Variance unknown (T-test).

Rule-of-thumb: If $\mathrm{N}>30$ or σ known then Z-test, else T-test.

Two-Tailed Versus One-Tailed Hyphothesis Tests

- One-sided vs. two-sided test.

Rule-of-thumb: If you want to test for difference, then use two-sided. If you care about specific direction of difference, use one-sided.

Figure A
Two-Tailed Test

Figure B -One-Tailed Test (Lef-Tailed Test)

Chi-squared test

Without any further introduction...

$$
\chi^{2}(\bar{\theta})=\sum_{i=1}^{N} \frac{\left(y_{i}-\lambda\left(x_{i} ; \bar{\theta}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

- Chi-squared test evaluates adequacy of model compared to data.

Example: Model fitted to (possibly binned) data, yielding p-value $=\operatorname{Prob}\left(\chi^{2}=45.9, \mathrm{~N}_{\text {dof }}=36\right)=0.125$
If the p-value is small, the hypothesis is unlikely...

Kolmogorov-Smirnov test

- Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value $=0.87$

The Kolmogorov test measures the maximal distance between the integrals of two distributions and gives a probability of being from the same distribution.

Kolmogorov-Smirnov test

- Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value $=0.87$

"A Kolmogorov-Smirnov test shows that the probability that the two distributions are not drawn randomly from the same parent population is greater than 99.96%; that is, the two distributions differ by more than 3.5σ ". [Quote from figure caption]

Kuiper test

Is a similar test, but it is more specialised in that it is good to detect SHIFTS in distributions (as it uses the maximal signed distance in integrals).

Common statistical tests

- One-sample test compares sample (e.g. mean) to known value. heat! μ_{0} Example: Comparing sample to known constant ($\mu_{\text {exp }}=2.91 \pm 0.01 \mathrm{vs} \mathcal{C}^{\mathbf{C}}$ [J.
- Two-sample test compares two samples $\mathbf{O n O}^{\mathbf{N}}$ Example: Comparing sample to known constant $\left(\mu_{\text {exp }}=2.91 \pm 0.01\right.$ vs boy nc ion, n - Paired test pests plied memforffeence (townimportanumiles).

These below nd y Example: Condindity between function and sample or between two samples, yielding p-value $=0.87$

- Wald-Wolfowitz runs test is a binary check for independence.
- Fisher's exact test calculates p-value for contingency tables.
- F-test compares two sample variances to see, if grouping is useful.

Wald-Wolfowitz runs test

Barlow, 8.3.2, page 153
A different test to the Chi2 (and in fact a bit orthogonal!) is the Wald-Wolfowitz runs test.

It measures the number of "runs", defined as sequences of same outcome (only two types).

Example:

If random, the mean and variance is known:

$$
\begin{aligned}
& \mu=\frac{2 N_{+} N_{-}}{N}+1 \\
& \sigma^{2}=\frac{2 N_{+} N_{-}\left(2 N_{+} N_{-}-N\right)}{N^{2}(N-1)}=\frac{(\mu-1)(\mu-2)}{N-1} .
\end{aligned}
$$

Note: The WW runs test requires $\mathrm{N}>10-15$ for the output to be approx. Gaussian! 26

Fisher's exact test

When considering a contingency table (like below), one can calculate the probability for the entries to be uncorrelated. This is Fisher's exact test.

	Row 1	Row 2	Row Sum
Column 1	A	B	$\mathrm{A}+\mathrm{B}$
Column 2	C	D	$\mathrm{C}+\mathrm{D}$
Column Sum	$\mathrm{A}+\mathrm{C}$	$\mathrm{B}+\mathrm{D}$	N

$$
p=\frac{\binom{A+C}{A}\binom{B+D}{B}}{\binom{N}{A+B}}=\frac{(A+B)!(C+D)!(A+C)!(B+D)!}{A!B!C!D!N!}
$$

Simple way to test categorial data (Note: Barnard's test is "possibly" stronger).

Fisher's exact test - example

Consider data on men and women dieting or not. The data can be found in the below table:

	Men	Women	Row total
Dieting	1	9	10
Non-dieting	11	3	14
Column total	12	12	24

Is there a correlation between dieting and gender?

The Chi-square test is not optimal, as there are (several) entries, that are very low (<5), but Fisher's exact test gives the answer:
$p=\binom{10}{1}\binom{14}{11} /\binom{24}{12}=\frac{10!14!12!12!}{1!9!11!3!24!} \simeq 0.00135$

F-test

To test for differences between variances in two samples, one uses the F-test:

$$
F=\frac{S_{X}^{2}}{S_{Y}^{2}}
$$

(b)

Note that this is a two-sided test. One is generally testing, if the two variances are the same.

