Applied Statistics Calibration

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Calibration definition

"Operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties (of the calibrated instrument or secondary standard) and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication."

[International Bureau of Weights and Measures]

Personally, I would shorten this to:

"Operation that, under specified conditions:

- Establishes a relation between the quantity of interest and associated information
- Uses this information to correct/improve the estimate of the quantity of interest." [Shortening of the above]

Let's have a few examples...

Calibration is many things!

Every field of science involves calibration of some kind.

Calibration target of Mars rover "Curiosity"

General considerations

Though calibration spans widely, there are a few general considerations: ★ Using control sample/group:

- Purpose: To ensure that there is not some (inherent) bias.
- Aim: A good control sample is large and looks "exactly" like signal.
- Example: People without "signal" disease spanning same lifestyles.
- ★ Considering result for already well determined quantity:
 - Purpose: To ensure that there is not some (inherent) bias.
 - Aim: A good control measurement is "easy" and well measured.
 - Example: Unbiased momentum resolution using particle resonances (Z).
- ★ Determining relation to well measurable quantity:
 - Purpose: Infer quantity in question from other sources/measurements.
 - Aim: If one can't measure directly, perhaps it can be done indirectly.
 - Example: Measuring flow of liquid in pipe using microphone (noise!).

Each field of science have their own "tricks of the trade", and sometimes breakthroughs are made through calibration.

Example: Carbon 14 dating

Carbon 14 dating used (and uses) samples of known age (from historical sources) to calibrate the scale and uncertainties. Tree rings have played a central role!

Example: Differential GPS

HST • WFC3/UVIS • ACS/WFC

Supernova Standard Candles

Using the fact, that there is a **precise relation** between light yield and distance for type 1a supernovae, very large distances (and future) of our Universe can be probed.

HST • WFC3/UVIS • ACS/WFC

Supernova Standard Candles

But in order to get best precision, further calibration is needed!

Using the fact, that there is a **precise relation** between light yield and distance for type 1a supernovae, very large distances (and future) of our Universe can be probed.

Conclusions

Calibration is usually a central part of analysing data in order to:

- Ensure that measurements are correct and correct them if they are biased.
- Establish/calibrate the uncertainty on measurements.

But it requires foresight and good planning of an experiment to be able to calibrate precisely. Being able to do so, distinguishes the **good experimenter**.

