Applied Statistics

Problem set in applied statistics 2016/2017

The following problem set is for the course applied statistics. A solution in PDF format must be sent (by email) before noon Friday the 23rd of December 2016. Working in groups and/or discussing the problems with others is allowed, but you should note your collaboration in the problem set.

Good luck, Troels, Daniel & Niccolo.

Statistics may be defined as "a body of methods for making wise decisions in the face of uncertainty". [W.A. Wallis, US statistician 1912-1998]

I – Distributions and probabilities:

- 1.1 2015 (7 points) You pick 20 M&M's from a (large) bag, where 5% are blue (you are told).
 - What distribution does the number of blue M&M's you picked follow? Why?
 - If you get six blue M&M's, do you trust the fraction of these to be 5%?
- 1.2 2015 (6 points) Two bags contain red and blue M&M's. Bag 1 has 50% red M&M's, while bag 2 has 75% red M&M's. You pick a random M&M from a random bag, and it is red.
 - What is the probability that you picked an M&M from bag 1?

II – Error propagation:

- **2.1** (8 points) An experiment to measure resistance R using Ohm's Law V = RI yields the measurements $V = 5.01 \pm 0.07V$ and $I = 1.178 \pm 0.013A$.
 - Assuming no correlations, what is the resistance and its uncertainty?

The experiment was designed to have a linear correlation between V and I of -0.95.

- What is the uncertainty on R then?
- **2.2** (8 points) Given $x = 0.56 \pm 0.02$, what is the value and uncertainty of $\exp(x)$, $\sin(x)$ and $\tan(x)$? And what if $x = 1.56 \pm 0.02$? Also, comment on the degree of Gaussianity of the uncertainties.
- **2.3** (10 points) The age of old rocks can be estimated from the current amounts of ${}^{238}U$ and its decay product ${}^{206}Pb$ as follows: $N({}^{238}U) = N({}^{238}U + {}^{206}Pb) \cdot \exp(-t/\tau_{U238})$. In a rock sample from Ilulissat in Greenland one finds **2689** ${}^{238}U$ and **3952** ${}^{206}Pb$ atoms. Assuming no initial Pb206 and given the half-life $\tau_{U238} = (4.47 \pm 0.03) \times 10^9 y$, what is the age of the rock and its uncertainty?

$\mathbf{III}-\mathbf{Monte}\ \mathbf{Carlo:}$

3.1 (12 points) Let $f(x) = C \sin^2(\pi/x) / \sqrt{x}$ be a PDF for $x \in [0.1, 1.0]$.

- What method would you use to produce random numbers according to f(x)? Why?
- Produce 100000 random numbers according to f(x) and plot these.
- In order for this PDF to be normalized, what value should C have?
- Perform a fit to the produced data points. Do you manage to get a good χ^2 ?

IV – Fitting data:

- 4.1 (12 points) The data www.nbi.dk/~petersen/data_MuonLifetime.txt contains the results of an experiment that measures muon decay times. The exponential signal has a background at very short times resulting from random noise around t = 0, and one that is constant in time.
 - Determine the constant background by fitting a suitable range at high times.
 - Extract the lifetime of the decay along with its uncertainty.
 - Fit the entire distribution with a suitable function. Do you obtain a good fit?
- **4.2** (12 points) You are measuring the gravitational acceleration q by letting a magnet drop a ball. which you then measure the position (d in meters) of at certain times (t in seconds). The data can be found in the file www.nbi.dk/~petersen/data_FreeFall.txt. The Gaussian uncertainties are $\sigma_t = 0.001$ s and $\sigma_d = 5$ mm. To begin with, consider only the first 8 data points.
 - Assuming that d(t=0) = 0 and v(t=0) = 0, determine q and its uncertainty.
 - Is the ball released at t = 0? Repeat the fit, and measure the possible offset in time, Δt .
 - Now consider all 20 points and test which of the following three hypothesis matches the data best, where τ (characteristic time) and v_{∞} (terminal velocity) are parameters:
 - * No air drag: $d(t) \sim \frac{1}{2}gt^2$

 - * Linear drag: $d(t) \sim g\tau(t \tau(1 e^{-t/\tau}))$ * Quadratic drag: $d(t) \sim v_{\infty}^2 \ln(\cosh(gt/v_{\infty}))/g$

V – Statistical tests:

5.2 (13 points) Benford's ("first-digit") Law states that leading digits $(d \in \{1, \ldots, 9\})$ occur with probability $P(d) = \log_{10}(1 + 1/d)$. Below is a table showing the frequency of first digits of countries size measured in km^2 and miles^2 ($\text{km}^2/\text{miles}^2$).

Digit	1	2	3	4	5	6	7	8	9
Frequency	58/56	34/37	22/20	21/17	10/14	14/14	11/14	7/12	10/4

- Test if country sizes in km² and miles² follow Benford's Law.
- Are the two distributions consistent with being from the same underlying distribution?
- **5.2** (12 points) In 1929 Edwin Hubble investigated the relationship between distance (D) and radial velocity (v) of extra-galactic nebulae. His original data from 1929 is listed below.

D (Mpc)	0.032	0.034	0.214	0.263	0.275	0.275	0.45	0.5	0.5	0.63	0.8	0.9
$v \; (\rm km/s)$	170	290	-130	-70	-185	-220	200	290	270	200	300	-30
D (Mpc)	0.9	0.9	0.9	1.0	1.1	1.1	1.4	1.7	2.0	2.0	2.0	2.0
$v \ (\rm km/s)$	650	150	500	920	450	500	500	960	500	850	800	1090

- Assuming uncertainties of 12% on the distance and $170 \ km/s$ on the radial velocity, fit the data to extract the constant of linear proportionality H_0 (Hubble constant), $v = H_0 D$.
- Hubble's distance measurement was biased by a factor 5.3 ± 0.3 due to the existance of two types of Cepheids. Given this correction, how good is the agreement with the modern value of the Hubble constant $H_0 = 67.80 \pm 0.77$.

Numbers are like people; torture them enough and they'll tell you anything.

[Unknown]