Applied Statistics

Central Limit Theorem

“Statistics is merely a quantisation of common sense”



Adding random numbers

If each of you chose a random number
from your own favorit distribution®,
and we added all these numbers,
repeating this many times...

What would you expect?

* OK - to be nice to me, you agree to have similar RMSs in these distributions! 2
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Central Limit Theorem:
The sum of N independent continuous random variables x; with means

u. and variances 02 becomes a Gaussian random variable with mean
u = X. u, and variance 02 = . 0.2 in the limit that N approaches infinity.
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Central Limit Theorem

Central Limit Theorem:
The sum of N independent continuous random variables x; with means

u; and variances 02 becomes a Gaussian random variable with mean

u = X. u, and variance 02 = . 0.2 in the limit that N approaches infinity.

The Central Limit Theorem holds under fairly general conditions, which means
that the Gaussian distribution takes a central role in statistics...
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[ [ [] [] [] [] DO(::ll:i{lNF.
The Gaussian is “the unit” of distributions!
CHANCES:

Since measurements are often affected by many small etfects, I, 7
uncertainties tend to be Gaussian (until otherwise proven!).

Statistical rules often require Gaussian uncertainties, and so
the central limit theorem is your new good friend..
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Law of large numbers

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

AVERAGE CONVERGES TO EXPECTED WALUE OF 3.5
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Example of Central Limit Theorem

Take the sum of 100 uniform numbers! Repeat 100000 times to see what
distribution the sum has...

f [ Hist_Unifl T ] [ : |
Hist_Uniform | a5  LHist_Sum | __Hist_Sum
:“" 0.00108 ‘000' | Entries 100000
- AN e -
14000 : Mean 0.002193
3500
12000 e RMS 1.00)
o . 3000 : 1 nedf S535/84
o 2500 - Peob 0.9851
8000
= 2000 Comtant Mar: 154
6000 1500; Mean 0001794 2 0.000168
| Sgmra 1.002 » 0.002
1000
2000/ 500" \
e v m xS R T B 1 g 0 . gsd
! . i . 5 -4 2 0 2 4 6

The result is a bell shaped curve, a so-called normal or Gaussian distribution.

It turns out, that this 1s very general!!!



Example of Central Limit Theorem

Now take the sum of just 10 uniform numbers!

Hist_Sum Hist_Sum
4000 = Entries 100000
E Mean 0.0008772
3500 —
- RMS 1
3000 :_ 2 | ndt 205.7173
2500 [— Prob 8.6446-17
2000 :_ Constant 3996 + 151
E Mean 0.002425 + 0.003160
1500 —
— Sigma 0.9965 + 0.0021
1000 —
500 —
SR fiai o
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Example of Central Limit Theorem

Now take the sum of just 5 uniform numbers!

Hist_Sum Hist Sum
4000 :_ Entries 100000
- Mean -0.0004084
3500 —
= RMS 1.002
3000 =3 %2 | ndf 558.9 / 66
2500 — Prob 0
2000 ; Constant 4018 + 14.9
E Mean 0.00651+ 0.00315
1500 —
= Sigma 0.9878 + 0.0019
1000 —
500 —
R T
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Example of Central Limit Theorem

Now take the sum of just 3 uniform numbers!

Hist_Sum Hist Sum
- Entries 100000
4000
= Mean .0.002565
3500 —
i RMS 1
3000 E— 12 [ ndf 2842/ 57
2500 — Prob 0
2000 f_ Constant 4125+ 149
E Mean -0.01674 + 0.00305
1500 —
= Sigma 0.941= 0.002
1000 —
500 —
: 1 | 1 l l I | |
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Example of Central Limit Theorem

This time we will try with a much more “nasty” function. Take the sum of
100 exponential numbers! Repeat 100000 times to see the sum’s distribution...

1 [ st Exponential | | 1 | |
Hist ‘E:xogonemlal | [Fet Exponestiil | [ Higt Sum | Hist_Sum ]
500 — [T T sesces |
M 09774 4000 ’
- WMot ar, 0 00t 4uh |
| 3500
400v RS 1o |
: 3000'_' 2t Tes 82 i
300 2500 ot o
! \ 2000} Censtnt s 188 |
- 1500_ Mean 00003873 0000230 g
j —— Sigma 0858 00022 l
100 1000 . ;
500
0 . . . . - |
2 1 0 1 2 3 4 3 6 0s = 2 0 2 4 6

Even with such a non-Gaussian skewed distribution, the sum quickly becomes
[ ]
Gaussian!!!

It turns out, that this fact saves us from much trouble: Makes statistics “easy”!
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Destnbuton in the Population Sampling Dstribution of the Mean, X

Central Limit
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Example of Central Limit Theorem

Looking at z-coordinate of tracks at vertex from proton collisions in CERNs
LHC accelerator by the ATLAS detector, this is what you get:

| RecZ0 |

22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0

Entries 588400

Mean -4.885+ 0.08428

RMS 64.65 + 0.0596
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The Gaussian distribution

Almost every field of science have their own terms for features of the Gaussian,
also known as the “normal” distribution.

X
The
Normal
Distribution
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The Gaussian distribution

It is useful to know just a few of the Range Inside Outside

most common Gaussian integrals: + 10 68 % 32 9%
" 95 % 5 %
+ 30 99.7 % 0.3 %

s + 5o 99.99995 %  0.00005 %
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Summary

The Central Limit Theorem

...1s your good friend because it...

ensures that uncertainties tend to be Gaussian

...which are the easiest to work with!
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