
3The Monte Carlo methodThe Monte Carlo method is a numerical technique for calculating probabilitiesand related quantities by using sequences of random numbers. For the case of asingle random variable, the procedure can be broken into the following stages.First, a series of random values r1; r2 : : : is generated according to a uniformdistribution in the interval 0 < r < 1. That is, the p.d.f. g(r) is given byg(r) = � 1 0 < r < 1;0 otherwise: (3.1)Next, the sequence r1; r2; : : : is used to determine another sequence x1; x2 : : :such that the x values are distributed according to a p.d.f. f(x) in which oneis interested. The values of x can then be treated as simulated measurements,and from them the probabilities for x to take on values in a certain region canbe estimated. In this way one e�ectively computes an integral of f(x). Thismay seem like a trivial exercise, since the function f(x) was available to beginwith, and could simply have been integrated over the region of interest. Thetrue usefulness of the technique, however, becomes apparent in multidimensionalproblems, where integration of a joint p.d.f. f(x; y; z; : : :) over a complicatedregion may not be feasible by other methods.3.1 Uniformly distributed random numbersIn order to generate a sequence of uniformly distributed random numbers, onecould in principle make use of a random physical process such as the repeatedtossing of a coin. In practice, however, this task is almost always accomplished bya computer algorithm called a random number generator. Many such algorithmshave been implemented as user-callable subprograms (e.g. the routines RANMAR[Mar91] or RANLUX [L�us94, Jam94], both in [CER97]). A detailed discussion ofrandom number generators is beyond the scope of this book and the interestedreader is referred to the more complete treatments in [Bra92, Jam90]. Here asimple but e�ective algorithm will be presented in order to illustrate the generalidea.A commonly used type of random number generator is based on the multi-plicative linear congruential algorithm. Starting from an initial integer value n0(called the seed), one generates a sequence of integers n1; n2; : : : according to therule



The transformation method 41ni+1 = (ani)modm: (3.2)Here the multipliera andmodulusm are integer constants and the mod (modulo)operator means that one takes the remainder of ani divided by m. The valuesni follow a periodic sequence in the range [1;m � 1]. In order to obtain valuesuniformly distributed in (0; 1), one uses the transformationri = ni=m: (3.3)Note that this excludes 0 and 1; in some other algorithms these values can beincluded. The initial value n0 and the two constants a and m determine theentire sequence, which, of course, is not truly random, but rather strictly deter-mined. The resulting values are therefore more correctly called pseudorandom.For essentially all applications these can be treated as equivalent to true ran-dom numbers, with the exception of being reproducible, e.g. if one repeats theprocedure with the same seed.The values of m and a are chosen such that the generated numbers performwell with respect to various tests of randomness. Most important among theseis a long period before the sequence repeats, since after this occurs the numberscan clearly no longer be regarded as random. In addition, one tries to attain thesmallest possible correlations between pairs of generated numbers. For a 32-bitinteger representation, for example, m = 2147483399 and a = 40692 have beenshown to give good results, and with these one attains the maximum period ofm � 1 � 2 � 109 [Lec88]. More sophisticated algorithms allow for much longerperiods, e.g. approximately 1043 for the RANMAR generator [Mar91, CER97].3.2 The transformation methodGiven a sequence of random numbers r1; r2; : : : uniformly distributed in [0; 1],the next step is to determine a sequence x1; x2; : : : distributed according to thep.d.f. f(x) in which one is interested. In the transformation method this is ac-complished by �nding a suitable function x(r) which directly yields the desiredsequence when evaluated with the uniformly generated r values. The problem isclearly related to the transformation of variables discussed in Section 1.4. There,an original p.d.f. f(x) for a random variable x and a function a(x) were speci�ed,and the p.d.f. g(a) for the function a was then found. Here the task is to �nda function x(r) that is distributed according to a speci�ed f(x), given that rfollows a uniform distribution between 0 and 1.The probability to obtain a value of r in the interval [r; r+ dr] is g(r)dr, andthis should be equal to the probability to obtain a value of x in the correspondinginterval [x(r); x(r)+dx(r)], which is f(x)dx. In order to determine x(r) such thatthis is true, one can require that the probability that r is less than some value r0be equal to the probability that x is less than x(r0). (We will see in the followingexample that this prescription is not unique.) That is, one must �nd a functionx(r) such that F (x(r)) = G(r), where F and G are the cumulative distributions



42 The Monte Carlo methodcorresponding to the p.d.f.s f and g. Since the cumulative distribution for theuniform p.d.f. is G(r) = r with 0 � r � 1, one hasF (x(r)) = Z x(r)�1 f(x0)dx0 = Z r�1 g(r0)dr0= r: (3.4)Equation (3.4) says in e�ect that the cumulative distribution F (x), treated as arandom variable, is uniformly distributed between 0 and 1 (cf. equation (2.18)).Depending on the f(x) in question, it may or may not be possible to solvefor x(r) using equation (3.4). Consider the exponential distribution discussed inSection 2.4. Equation (3.4) becomesZ x(r)0 1� e�x0=�dx0 = r: (3.5)Integrating and solving for x givesx(r) = �� log(1� r): (3.6)If the variable r is uniformly distributed between 0 and 1 then r0 = 1� r clearlyis too, so that the function x(r) = �� log r (3.7)also has the desired property. That is, if r follows a uniform distribution between0 and 1, then x(r) = �� log r will follow an exponential distribution with mean�.3.3 The acceptance{rejection methodIt turns out to be too di�cult in many practical applications to solve equation(3.4) for x(r) analytically. A useful alternative is von Neumann's acceptance{rejection technique [Neu51]. Consider a p.d.f. f(x) which can be completely sur-rounded by a box between xmin and xmax and having height fmax, as shown inFig. 3.1. One can generate a series of numbers distributed according to f(x) withthe following algorithm:(1) Generate a random number x, uniformly distributed between xmin and xmax,i.e. x = xmin + r1(xmax � xmin) where r1 is uniformly distributed between 0and 1.(2) Generate a second independent random number u uniformly distributedbetween 0 and fmax, i.e. u = r2fmax.(3) If u < f(x), then accept x. If not, reject x and repeat.



The acceptance{rejection method 43
x

0

0.1

0.2

0.3

0.4

0.5

-2 0 2 4 6 8

f (
x)

xmin xmax

f max Fig. 3.1 A probability density f(x)enclosed by a box to generate ran-dom numbers using the acceptance-re-jection technique.The accepted x values will be distributed according to f(x), since for each valueof x obtained from step (1) above, the probability to be accepted is proportionalto f(x).As an example consider the p.d.f.1f(x) = 38 (1 + x2); �1 � x � 1: (3.8)At x = �1 the p.d.f. has a maximum value of fmax = 3=4. Figure 3.2(a) showsa scatter plot of the random numbers u and x generated according to the al-gorithm given above. The x values of the points that lie below the curve areaccepted. Figure 3.2(b) shows a normalized histogram constructed from the ac-cepted points.The e�ciency of the algorithm (i.e. the fraction of x values accepted) is theratio of the areas of the p.d.f. (unity) to that of the enclosing box fmax � (xmax�xmin). For a highly peaked density function the e�ciency may be quite low, andthe algorithm may be too slow to be practical. In cases such as these, one canimprove the e�ciency by enclosing the p.d.f. f(x) in any other curve g(x) forwhich random numbers can be generated according to g(x)=R g(x0)dx0, using,for example, the transformation method.The more general algorithm is then:(1) Generate a random number x according to the p.d.f. g(x)=R g(x0)dx0.(2) Generate a second random number u uniformly distributed between 0 andg(x).(3) If u < f(x), then accept x. If not, reject x and repeat.1Equation (3.8) gives the distributionof the scatteringangle � in the reaction e+e� ! �+��with x = cos � (see e.g. [Per87]).



44 The Monte Carlo method
x

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

u (a)

x

0

0.25

0.5

0.75

1

-1 -0.5 0 0.5 1

f (
x) (b) Fig. 3.2 (a) Scatter plot of pairs ofnumbers (u;x), where x is uniformlydistributed in �1 � x � 1, and u isuniform in 0 � u � fmax. The x val-ues of the points below the curve areaccepted. (b) Normalized histogram ofthe accepted x values with the corre-sponding p.d.f.Here the probability to generate a value x in step (1) is proportional to g(x),and the probability to be retained after step (3) is equal to f(x)=g(x), so thatthe total probability to obtain x is proportional to f(x) as required.3.4 Applications of the Monte Carlo methodThe Monte Carlo method can be applied whenever the solution to a problem canbe related to a parameter of a probability distribution. This could be either anexplicit parameter in a p.d.f., or the integral of the distribution over some region.A sequence of Monte Carlo generated values is used to evaluate an estimatorfor the parameter (or integral), just as is done with real data. Techniques forconstructing estimators are discussed in Chapters 5{8.An important feature of properly constructed estimators is that their sta-tistical accuracy improves as the number of values n in the data sample (fromMonte Carlo or otherwise) increases. One can show that under fairly generalconditions, the standard deviation of an estimator is inversely proportional topn (see Section 6.6). The Monte Carlo method thus represents a numerical in-tegration technique for which the accuracy increases as 1=pn.This scaling behavior with the number of generated values can be comparedto the number of points necessary to compute an integral using the trapezoidalrule. Here the accuracy improves as 1=n2, i.e. much faster than by Monte Carlo.For an integral of dimension d, however, this is changed to 1=n2=d, whereasfor Monte Carlo integration one has 1=pn for any dimension. So for d > 4,the dependence of the accuracy on n is better for the Monte Carlo method. Forother integration methods, such as Gaussian quadrature, a somewhat better rateof convergence can be achieved than for the trapezoidal rule. For a large enough



Applications of the Monte Carlo method 45number of dimensions, however, the Monte Carlo method will always be superior.A more detailed discussion of these considerations can be found in [Jam80].The Monte Carlo technique provides a method for determining the p.d.f.sof functions of random variables. Suppose, for example, one has n independentrandom variables x1; : : : ; xn distributed according to known p.d.f.s f1(x1), : : :,fn(xn), and one would like to compute the p.d.f. g(a) of some (possibly compli-cated) function a(x1; : : : ; xn). The techniques described in Section 1.4 are oftenonly usable for relatively simple functions of a small number of variables. Withthe Monte Carlo method, a value for each xi is generated according to the corre-sponding fi(xi). The value of a(x1; : : : ; xn) is then computed and recorded (e.g.in a histogram). The procedure is repeated until one has enough values of a toestimate the properties of its p.d.f. g(a) (e.g. mean, variance) with the desiredstatistical precision. Examples of this technique will be used in the followingchapters.The Monte Carlo method is often used to simulate experimental data. Inparticle physics, for example, this is typically done in two stages: event genera-tion and detector simulation. Consider, for example, an experiment in which anincoming particle such as an electron scatters o� a target and is then detected.Suppose there exists a theory that predicts the probability for an event to occuras a function of the scattering angle (i.e. the di�erential cross section). First oneconstructs a Monte Carlo program to generate values of the scattering angles,and thus the momentum vectors, of the �nal state particles. Such a program iscalled an event generator. In high energy physics, event generators are availableto describe a wide variety of particle reactions.The output of the event generator, i.e. the momentum vectors of the gener-ated particles, is then used as input for a detector simulation program. Sincethe response of a detector to the passage of the scattered particles also involvesrandom processes such as the production of ionization, multiple Coulomb scat-tering, etc., the detector simulation program is also implemented using the MonteCarlo method. Programming packages such as GEANT [CER97] can be used todescribe complicated detector con�gurations, and experimental collaborationstypically spend considerable e�ort in achieving as complete a modeling of thedetector as possible. This is especially important in order to optimize the detec-tor's design for investigating certain physical processes before investing time andmoney in constructing the apparatus.When the Monte Carlo method is used to simulate experimental data, onecan most easily think of the procedure as a computer implementation of anintrinsically random process. Probabilities are naturally interpreted as relativefrequencies of outcomes of a repeatable experiment, and the experiment is simplyrepeated many times on the computer. The Monte Carlo method can also beregarded, however, as providing a numerical solution to any problem that canbe related to probabilities. The results are clearly independent of the probabilityinterpretation. This is the case, for example, when the Monte Carlo method isused simply to carry out a transformation of variables or to compute integralsof functions which may not normally be interpreted as probability densities.


