3
The Monte Carlo method

The Monte Carlo method is a numerical technique for calculating probabilities
and related quantities by using sequences of random numbers. For the case of a
single random variable, the procedure can be broken into the following stages.
First, a series of random values 71,75 ... 18 generated according to a uniform
distribution in the interval 0 < r < 1. That is, the p.d.f. g(r) is given by

g(r)_{g) 0<r<l, (3.1)

otherwise.

Next, the sequence 71, ro, .. .18 used to determine another sequence x1, x5 ...
such that the x values are distributed according to a p.d.f. f(2) in which one
is interested. The values of 2 can then be treated as simulated measurements,
and from them the probabilities for z to take on values in a certain region can
be estimated. Tn this way one effectively computes an integral of f(z). This
may seem like a trivial exercise, since the function f(2) was available to bhegin
with, and could simply have been integrated over the region of interest. The
true usefulness of the technique, however, becomes apparent in multidimensional
problems, where integration of a joint p.d.f. f(x,y,z,...) over a complicated
region may not be feasible by other methods.

3.1 Uniformly distributed random numbers

In order to generate a sequence of uniformly distributed random numbers, one
could n principle make use of a random physical process such as the repeated
tossing of a coin. In practice, however, this task is almost always accomplished by
a computer algorithm called a random number generator. Many such algorithms
have been implemented as user-callable subprograms (e.g. the routines RANMAR
[Mar91] or RANLUX [Liis94, Jam94], both in [CER97]). A detailed discussion of
random number generators is beyond the scope of this book and the interested
reader is referred to the more complete treatments in [Bra92, Jam90]. Here a
simple but effective algorithm will be presented in order to illustrate the general
idea.

A commonly used type of random number generator is based on the multi-
plicative linear congruential algorithm. Starting from an initial integer value ng
(called the seed), one generates a sequence of integers ny, nso, .. . according to the
rule

The transformation method 41

n;11 = (an;) modm. (3.2)

Here the multiplier ¢ and modulus m are integer constants and the mod (modulo)
operator means that one takes the remainder of an; divided by m. The values
n; follow a periodic sequence in the range [1,m — 1]. Tn order to obtain values
uniformly distributed in (0, 1), one uses the transformation

ri = n;/m. (3.3)

Note that this excludes 0 and 1; in some other algorithms these values can be
included. The mitial value ng and the two constants @ and m determine the
entire sequence, which, of course, is not, truly random, but rather strictly deter-
mined. The resulting values are therefore more correctly called psendorandom.
For essentially all applications these can be treated as equivalent to true ran-
dom numbers, with the exception of being reproducible, e.g. if one repeats the
procedure with the same seed.

The values of m and a are chosen such that the generated numbers perform
well with respect to various tests of randomness. Most important among these
is a long period before the sequence repeats, since after this occurs the numbers
can clearly no longer be regarded as random. In addition, one tries to attain the
smallest possible correlations between pairs of generated numbers. For a 32-bit
integer representation, for example, m = 2147483399 and a = 40692 have been
shown to give good results, and with these one attains the maximum period of
m — 1 a2 x 107 [Lec88]. More sophisticated algorithms allow for much longer
periods, e.g. approximately 10* for the RANMAR generator [Mar91, CER97].

3.2 The transformation method

Given a sequence of random numbers ry, 7y, ... uniformly distributed in [0, 1],
the next step i1s to determine a sequence x1, 4, ... distributed according to the
p.d.f. f(2) in which one is interested. Tn the transformation method this is ac-
complished by finding a suitable function #(r) which directly yields the desired
sequence when evaluated with the uniformly generated r values. The problem 1s
clearly related to the transformation of variables discussed in Section 1.4. There,
an original p.d.f. f(z) for arandom variable 2 and a function a(x) were specified,
and the p.d.f. g(a) for the function a was then found. Here the task is to find
a function z(r) that is distributed according to a specified f(2), given that r
follows a uniform distribution between 0 and 1.

The probability to obtain a value of r in the interval [r,r+ dr] is g(r)dr, and
this should be equal to the probability to obtain a value of z in the corresponding
interval [#(r), 2(r)+dx(r)], which is f(2)dz. Tn order to determine z(r) such that
this is true, one can require that the probability that r is less than some value »’
be equal to the probability that x is less than (r"). (We will see in the following
example that this prescription is not unique.) That is, one must find a function
x(r) such that F(z(r)) = G(r), where F and GG are the cumulative distributions

42 The Monte Carlo method

corresponding to the p.d.f.s f and g. Since the cumulative distribution for the
uniform p.d.f. is G(r) = r with 0 < » < 1, one has

Fla(r) = /M feist = [g

=00 =00

= r. (3.4)

Equation (3.4) says in effect that the caumulative distribution F(z), treated as a
random variable, is uniformly distributed between 0 and 1 (ef. equation (2.18)).

Depending on the f(#) in question, it may or may not be possible to solve
for 2:(r) using equation (3.4). Consider the exponential distribution discussed in
Section 2.4. Equation (3.4) becomes

O T
/ —e "y = i, (3.5)
Jo &

Integrating and solving for x gives

#(r) = —€log(1 — 1), (3.6)

If the variable r is uniformly distributed between 0 and 1 then ' = 1 — r clearly
is too, so that the function

x(r) = —&logr (3.7)

also has the desired property. That is, if r follows a uniform distribution between
0 and 1, then 2(r) = —€&logr will follow an exponential distribution with mean

.

3.3 The acceptance—rejection method

Tt turns out to be too difficult in many practical applications to solve equation
(3.4) for x(r) analytically. A useful alternative is von Neumann’s acceptance
rejection technique [Neub51]. Consider a p.d.f. f(x) which can be completely sur-
rounded by a box between xin and #4.x and having height fi .y, as shown in
Fig. 3.1. One can generate a series of numbers distributed according to f(2) with
the following algorithm:

(1) Generate a random number z, uniformly distributed between 2, and @ ax,
ie. = Zmin + 71 (Zmax — Zmin) Where ry is uniformly distributed between 0
and 1.

(2) Generate a second independent random number u uniformly distributed
between 0 and fiax, 1.€. 1 = P9 fimax-

(3) T u < f(x), then accept 2. If not, reject 2 and repeat.

The acceptance-rejection method 43

8 0.5 T T
—
04 [)<VTHn)<TT|aX]
fmax
03 B
02 r q
01 r 9 Fig. 3.1 A probability density f(=)
enclosed by a box to generate ran-
))) ‘ dom numbers using the acceptance-re-
0 Lo .
2 0 2 4 6 8 jection technique.

The accepted 2 values will be distributed according to f(z), since for each value
of # obtained from step (1) above, the probability to be accepted is proportional
to f(x).

As an example consider the p.d.f.

«

fa)=S(427), A <e<l (3.8)

0| W

At 2 = 41 the p.d.f. has a maximum value of fi,.x = 3/4. Figure 3.2(a) shows
a scatter plot of the random numbers v and x generated according to the al-
gorithm given above. The x values of the points that lie below the curve are
accepted. Figure 3.2(b) shows a normalized histogram constructed from the ac-
cepted points.

The efficiency of the algorithm (i.e. the fraction of 2 values accepted) is the
ratio of the areas of the p.d.f. (unity) to that of the enclosing box foax - (Zmax —
Tmin). For a highly peaked density function the efficiency may be quite low, and
the algorithm may be too slow to be practical. In cases such as these, one can
improve the efficiency by enclosing the p.d.f. f(2) in any other curve g(a) for
which random numbers can be generated according to g(z)/ [g(2')dx’, using,
for example, the transformation method.

The more general algorithm is then:

(1) Generate a random number z according to the p.d.f. g(x)/ [g(2')dz’.

(2) Generate a second random number u uniformly distributed between 0 and

g(x).

(3) T u < f(x), then accept 2. If not, reject 2 and repeat.

TEquation (3.8) gives the distribution of the scattering angle § in the reactionete™ — pt pu—
with z = cos f (see e.g. [Per87]).

44 The Monte Carlo method

Ol) .
4 Fig. 3.2 (a) Scatter plot of pairs of
0.75 numbers (u,x), where x is uniformly
distributed in —1 < z < 1, and « is
0.5 uniform in 0 < % < fmax. The z val-
ues of the points below the curve are
0.25 accepted. (b) Normalized histogram of
the accepted = values with the corre-

0 ‘ : : sponding p.d.f.
-1 -0.5 0 0.5 1

Here the probability to generate a value 2 in step (1) is proportional to g(x),
and the probability to be retained after step (3) is equal to f(x)/g(x), so that
the total probability to obtain « is proportional to f(z) as required.

3.4 Applications of the Monte Carlo method

The Monte Carlo method can be applied whenever the solution to a problem can
be related to a parameter of a probability distribution. This could be either an
explicit parameter in a p.d.f., or the integral of the distribution over some region.
A sequence of Monte Carlo generated values is used to evaluate an estimator
for the parameter (or integral), just as is done with real data. Techniques for
constructing estimators are discussed in Chapters 5 8.

An important feature of properly constructed estimators is that their sta-
tistical accuracy improves as the number of values n in the data sample (from
Monte Carlo or otherwise) increases. One can show that under fairly general
conditions, the standard deviation of an estimator is inversely proportional to
V/n (see Section 6.6). The Monte Carlo method thus represents a numerical in-
tegration technique for which the accuracy increases as 1/4/n.

This scaling behavior with the number of generated values can be compared
to the number of points necessary to compute an integral using the trapezoidal
rule. Here the accuracy improves as 1/n?, i.e. much faster than by Monte Carlo.
For an integral of dimension d, however, this is changed to 1/77,2/d7 whereas
for Monte Carlo integration one has 1/4/n for any dimension. So for d > 4,
the dependence of the accuracy on n is better for the Monte Carlo method. For
other integration methods, such as (Gaussian quadrature, a somewhat better rate
of convergence can be achieved than for the trapezoidal rule. For a large enough

Applications of the Monte Carlo method 45

number of dimensions, however, the Monte Carlo method will always be superior.
A more detailed discussion of these considerations can be found in [Jam80].

The Monte Carlo technique provides a method for determining the p.d.f.s
of functions of random variables. Suppose, for example, one has n independent
random variables a1, ... @, distributed according to known p.d.f.s fi(zy), ...,
Jn(2,), and one would like to compute the p.d.f. g(a) of some (possibly compli-
cated) function a(xy, ..., 2,). The techniques described in Section 1.4 are often
only usable for relatively simple functions of a small number of variables. With
the Monte Carlo method, a value for each z; 1s generated according to the corre-
sponding f;(z;). The value of a(x,...,z,) is then computed and recorded (e.g.
in a histogram). The procedure is repeated until one has enough values of a to
estimate the properties of its p.d.f. g(a) (e.g. mean, variance) with the desired
statistical precision. Examples of this technique will be used in the following
chapters.

The Monte Carlo method is often used to simulate experimental data. In
particle physics, for example, this is typically done in two stages: event genera-
tion and detector simulation. Consider, for example, an experiment, in which an
incoming particle such as an electron scatters off a target and is then detected.
Suppose there exists a theory that predicts the probability for an event to occur
as a function of the scattering angle (i.e. the differential cross section). First one
constructs a Monte Carlo program to generate values of the scattering angles,
and thus the momentum vectors, of the final state particles. Such a program is
called an event generator. In high energy physics, event generators are available
to describe a wide variety of particle reactions.

The output of the event generator, i.e. the momentum vectors of the gener-
ated particles, is then used as input for a detector simulation program. Since
the response of a detector to the passage of the scattered particles also involves
random processes such as the production of 1onization, multiple Coulomb scat-
tering, etc., the detector simulation program is also implemented using the Monte
Carlo method. Programming packages such as GEANT [CER97] can be used to
describe complicated detector configurations, and experimental collaborations
typically spend considerable effort in achieving as complete a modeling of the
detector as possible. This 1s especially important in order to optimize the detec-
tor’s design for investigating certain physical processes before investing time and
money in constructing the apparatus.

When the Monte Carlo method 1s used to simulate experimental data, one
can most easily think of the procedure as a computer implementation of an
intrinsically random process. Probabilities are naturally interpreted as relative
frequencies of outcomes of a repeatable experiment, and the experiment is simply
repeated many times on the computer. The Monte Carlo method can also be
regarded, however, as providing a numerical solution to any problem that can
be related to probabilities. The results are clearly independent of the probability
interpretation. This is the case, for example, when the Monte Carlo method 1s
used simply to carry out a transformation of variables or to compute integrals
of functions which may not normally be interpreted as probability densities.

