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“Statistics is merely a quantisation of common sense”



Defining the Chi-Square

Problem Statement: Given N data points (x,y), adjust the parameter(s) 6
of a model, such that it fits data best.

The best way to do this, given uncertainties o; on y; is by minimising:

XQ(H) = Z (yz ¥ fg(;vza 9))2

The power of this method is hard to overstate!

Not only does it provide a simple, elegant and unique way of fitting
data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!



Chi-Square probability interpretation

The Chi-Square probability can roughly be interpreted as follows:
e If x2/ Ndof = 1 or more precisely if 0.01 < p(x2,Ndof) < 0.99,
then all is good.
e If x2/ Ndof » 1 or more precisely if p(x2Ndof) < 0.01,
then your fit is bad, and your hypothesis is probably not correct.
e If x2/ Ndof « 1 or more precisely if 0.99 < p(x2,Ndof),
then your fit is TOO good and you probably overestimated the errors.

If the statistics behind the plot is VERY high (great than 10¢), then you
might have a hard time finding a model, which truly describes all the
features in the plot (as now tiny effects become visible), and one hardly
ever gets a good Chi-Square probability.

However, in this case, one should not worry too much, unless very high
precision is wanted.

Anyway, the Chi-Square still allows you to compare several models,
and determine which one is the better.



Notes on the ChiSquare method

“It was formerly the custom, and is still so in works on the
theory of observations, to derive the method of least squares
from certain theoretical considerations, the assumed normality
of the errors of the observations being one such.

It is however, more than doubtful whether the conditions for
the theoretical validity of the method are realised in statistical
practice, and the student would do well to regard the method
as recommended chiefly by its comparative simplicity and by
the fact that it has stood the test of experience”.

|G.U. Yule and M.G. Kendall 1958]



Example of Chi-Square “landscape”
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The fact that there are several minima makes fitting difficult/uncertain!

Always give good starting values!!!




Example of Chi-Square

specially fitting oscill ata requires a good st g value for omega.

en a small offset may result in a Chi2, which is not sensitive to omega!

333333333

000000

Time elapsed [s]



Example of Chi-Square

Especially fitting oscillatory data requires a good starting value for omega.
Even a small offset may result in a Chi2, which is not sensitive to omega!
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Very advanced fitting

Sometimes, one has several samples (signal, control, validation, background,
etc.) to fit, and one would like to include the full information in all of these.

If one (input) sample dominates in size, then there is no reason not to fit this
sample separately, and then just fix the parameters to the result of this fit.

However, if they are of similar size, then a simultaneous fit of the samples is
the optimal solution. This can grow quite large...

In 2002 the BaBar collaborations fit for CP-violation (sin2(3)
included 98 floating parameters applied to four datasets.

In 2005 the BaBar collaborations fit for mixing in the D0-system
included 120 floating parameters applied to six datasets.

But that was nothing compared to...
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The ATLAS Higgs discovery fit
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Fitting tips & tricks

There are a few tips & tricks that will make your (fitting) life a bit easier:

* Always give good initial values!!!

e Never start with an advanced fit - make a simple one work and expand!
e Try to make your parameters as little correlated as possible.

e Let the parameters represent the quantities of interest.

e Start with a ChiSquare fit, as these usually has better convergence than LLH.

When a fit refuses to work, try the following:
e Draw function on top of data to check formula and quality of initial values.

e Check the correlations between the parameters.
* Try to fix one or more parameter to a value you find reasonable.

Even with all of this advice, there is no guaranty that your fit will work.
It is after all a bit of an art....

10



Fitting equations/constraints
Examples...
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Setting common parameters

For several reasons, one may decide to use common parameters:

e Parameters may be very correlated (e.g. multiple widths and lifetimes)

e Parameters may be expected to be identical (e.g. resolution or normalisation)
A (well reasoned) parameter reduction is typically good!

In the latter case, it may allow you to use a control/calibration channel in the fit.
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Fitting with polynomials

Polynomials can be good for fitting /approximating shapes, BUT...
e Coefficients can become heavily correlated (if not careful).
e Notoriously “wiggly” and with little/no resulting understanding,.
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Legendre & Chebyshev

To avoid correlations, it is very useful to “expand” polynomial around the
relevant point/scale, e.g. fitting years (say 1990-2019).

It is very useful to use Legendre /Chebychev polynomials for fitting, as these
are designed to be orthogonal to each other, and hence minimise correlations:
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An alternative is to use Chebyshev polynomials, which have many of the same
“desired” properties, and minimise “Runge’s Phenomenon”, i.e. wigglyness.



Fitting with templates

Sometimes, the shape to be fitted can not be expressed as a function, but
obtained through a histogram from simulation/data.
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For each template, one calculates the ChiSquare between the data and the
template. You then repeat it for all templates, and subsequently obtain a
parabola with a minimum (central value) and a curvature (uncertainty).



Bonus Slides
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Setting the momentum scale

A well known type of event in particle physics (at he LHC accelerator) is the
Z > pu+ - decay, which has two muons flying out through the detector.

As the Z-mass is well known,
these events can be used to check

(R

-

and correct the reconstruction.

CEST

Run: 154822, Event: 14321500
Date: 2010-05-10 02:07:22 CEST

p,() =27 GeV n(u)= 0.7
p; (") =45 GeV n(u) = 2.2
MNl =87 GeV

Z>uu candidate
in 7 TeV collisions



Setting the momentum scale

There are many ways in which this reconstruction can be biased due to the
detector not being aligned correctly.
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Charge dependent fit
The approach follows ATLAS-CONF-2012-141:

There is a charge independent (radial):
p — p(1+9dpadial)

The charge and pr dependent (sagitta):

q/p — q/p(1+ qudsagitta)

The improvement is that the charge dependent should take the momentum into
account, as the effect changes with momentum.

I chose the eta binning of the fit to have 24 or 51 bins.
The fit thus provides 24 /51 values for dr and 24 /51 for ds.



Introduction to idea

In order to use all Z > 1l events, the idea is to:
e Divide leptons into bins in eta, pt, phi, charge.

Bin definition should match variables we are interested in [here: 51 in eta, 2 in charge]
e For lepton pair of bins ij, plot Z mass for data and MC (i.e. N2 plots).

The N2 plots limits number of bins to about 100. Not all ij-values are filled, which is OK.
e For each ij data-MC pair, determine value a;:

_ S MC data
Qi =My~ /my

The problem is: “from which lepton i or j” does the bias come from?

e Non-unit values are from lepton bins i and j. Obtain them, by minimizing;:

() = T | B

From this we obtain the momentum/energy scales 3 for each bin i.
There are N2 o;j values (perhaps a bit less) to constrain the N 3 values.




Outline of the method

A 24x24 = 576 Z mass distributions in total!
For each bin in n+n-, 25

fit the mass peak: -
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Inspection of eta distribution

Data: 1.64M events, MC: 4.7M events
At first sight, they seem pretty consistent. However, a closer look reveals
differences. What is causing the difference at In| =0.95?
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504 out of the 576 n+n- has enough data (N > 25) and a good fit in both data

and MC. These values are then used in the further fit. 9



Charge dependent fit

The 504 ratios of Z masses Pe— D (1 3 51- adi al)
looks like this:

0.9936 0.0028 Q/p — Q/p (1 S qu&sagitta)

A.99386 0.08823
A.9974 0.08621
A.9948 06.0617
A.9946 0.0817
8.9931 06.8817
A.9957 0.8613

a.9977 8.68817
A.993A A AR1A

These values are used in a x2 as follows:
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= Y R(mz)i; — /(14 0r;)(1+ prds;) x (1+0r;)(1 — prds;)
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©J

1.0886 W.8825
a.9979 08.68019

orooes oo Inshort, the dr and ds values should minimise the expected

8.9968 ©.0013 difference between data and MC Z mass ratio.
5.9969 0.0A14

A.9971 06.68613
A.9962 0.68813
A.9959 08.8812
A.9965 0.0812
A.99306 06.0812
A.9936 0.08815 23
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Result for Inner Detector

This is what out detector looks like for Inner Detector Muons:

ID Momentum scale factor §(radial)
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Result for Inner Detector

This is what out detector looks like for Inner Detector Muons:

‘..rv O 1 5 :“ T T [ I T T T l T T I I ] T I T T l T T T I ] T T [ ]
E : Zuu 2011 Data %% = 2099.8, Ndof = 2212, Prob = 0.96 I
T 0.15:— 1
g 0.05] ++ 4 + I
2 . 10
S 1 t 1 + 1]
I L o, ant JH }
s ot KA
§ 005 S SR S
S -0.05 + + [
n i 1
= il + [
2 01 I
) |
g H | | | | | H
= -015—+ 5 1 —— 1 2
0

1 of muon



ID Momentum scale factor §(radial)

Corrected result

Rerunning with the correction applied to MC, I get:
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