Applied Statistics ProblemSet Solution and Discussion

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Problem 1.1

1.1 (6 points) Little Peter goes to the casino and puts money on black ($p=18 / 37$).

- In 50 games, what are the chances that he will win exactly 25 times? 26 times or more?
- How many times does he have to play in order to be 95% sure of winning at least 20 times?

$$
P(k=25 \mid 50, p)=\frac{50!}{25!^{2}}(p(1-p))^{25}=0.110243
$$

$$
P(k>25 \mid 50, p)=\sum_{k=26}^{50} \frac{50!}{k!(50-k)!} p^{k}(1-p)^{50-k}=0.369458
$$

Problem 1.1

1.1 (6 points) Little Peter goes to the casino and puts money on black ($p=18 / 37$).

- In 50 games, what are the chances that he will win exactly 25 times? 26 times or more?
- How many times does he have to play in order to be 95% sure of winning at least 20 times?

Problem 1.2

1.2 (4 points) What is the probability of a Gaussian value to lie between 1.25σ and 2.5σ away from the mean?

$$
\mathrm{P}(1.25 \sigma<x<2.5 \sigma)=2 \cdot(\operatorname{CDF}(2.5)-\operatorname{CDF}(1.25))=0.1989
$$

Problem 1.3

1.3 (6 points) The number of S-train delays is counted daily. Assume in the following, that delays are uncorrelated, and that the number of departures is the same every day.

- What distribution should the number of daily delays follow?
- Days with more than 7 delays are considered "delay days". If there were 19 "delay days" in a normal year, what is your estimate for the average number of daily delays?

Independent (?), N large, p small (both possibly varying): Poisson

Problem 1.3

1.3 (6 points) The number of S-train delays is counted daily. Assume in the following, that delays are uncorrelated, and that the number of departures is the same every day.

- What distribution should the number of daily delays follow?
- Days with more than 7 delays are considered "delay days". If there were 19 "delay days" in a normal year, what is your estimate for the average number of daily delays?

Independent (?), N large, p small (both possibly varying): Poisson

Typical mistakes

Problem 1.1:

- Not including 26 in the second problem
- Rounding N to 50, 51, 52, 55 etc

Problem 1.2:

- One-sided gaussian integral
- Misinterpretation of the question, e.g. giving $\mathrm{P}(\mathrm{x}<2.5)$ and $\mathrm{P}(\mathrm{x}<1.25)$ without subtracting them.

Problem 1.3:

- Distribution identified as binomial or gaussian, with or without explanation
- Distribution identified as poissonian, but with missing or wrong explanation
- Forgetting to include 8 in calculation
- Fixing the result as lambda $=4+/-2$ days, using the squared root of lambda as uncertainty on mean.

Problem 2.1

2.1 (13 points) A measurement of a tumor depth (in cm) was done using two methods. The first gave 4 measurements with uncertainty while the second gave 12 without, as shown in the table.

With unc.	2.05 ± 0.11			2.61 ± 0.10				2.46 ± 0.13		2.48 ± 0.12		
Without unc.	2.69	2.71	2.56	2.48	2.34	2.79	2.54	2.68	2.69	2.58	2.66	2.70

- Do the measurements with uncertainty agree with each other? Do those without?
- Which of the two methods provide the most accurate positioning?
- What is your best estimate of the tumors position? And with what uncertainty?

Problem 2.1

Problem 2.1

Problem 2.1

Some rejected points among those without uncertainties!

We also want to look at the measurements without uncertainty. Here we find the mean and standard deviation of the measurements to be: $\mu=2.6183 \pm 0.0357$, std $=0.1236$. Again we look to see how far the measurements are from the mean. This time we do it with a one sample test, if z is more than 3σ away, we reject the measurement:

Measurement \#	z-value	
Measurement 1	-2.01σ	\Rightarrow accept
Measurement 2	-2.57σ	\Rightarrow accept
Measurement 3	1.64σ	\Rightarrow accept
Measurement 4	3.88σ	\Rightarrow reject
Measurement 5	7.80σ	\Rightarrow reject
Measurement 6	-4.81σ	\Rightarrow reject
Measurement 7	2.20σ	\Rightarrow accept
Measurement 8	-1.73σ	\Rightarrow accept
Measurement 9	-2.01σ	\Rightarrow accept
Measurement 10	1.07σ	\Rightarrow accept
Measurement 11	-1.17σ	\Rightarrow accept
Measurement 12	-2.29σ	\Rightarrow accept

Typical mistakes

Problem 2.1:

- Wrong uncertainty on dataset2: Forgetting to divide rms by squared(N).
- For measurements without uncertainties, using error on mean for distance and rejection.
- Noting that problem is "low statistics" in case with uncertainties!
- Wrong uncertainty on weighted mean and no chi2 test for weighted mean
- Not excluding first point of dataset1, either because chi2 test missing or because they are "not a fan" of this approach
- Forgetting to discuss precision
- Not combining the two datasets, after excluding the first point.
- Combining in weighted average, but forgetting to chi2 test
- Combining without excluding first datapoint, even if the chi2 test had failed
- Not giving a final, unique estimation of the depth

$$
x=(2.60 \pm 0.03) \mathrm{cm} ; \quad \chi^{2}=2.43 ; p=48.8 \%
$$

Problem 2.2

2.2 (9 points) The spectral radiance B of a body is given by Planck's Law: $B(\nu, T)=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{\frac{h \nu}{k_{\mathrm{B} T}}}-1}$
where ν is the frequency and T is the absolute temperature, while $h=6.626 \times 10^{-34} \mathrm{Js}, c=299.7 \times 10^{6} \mathrm{~m} / \mathrm{s}$, and $k_{B}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ are constants of nature.

- Given values of $\nu=(0.566 \pm 0.025) \times 10^{15} \mathrm{~Hz}$ and $T=(5.50 \pm 0.29) \times 10^{3} \mathrm{~K}$ (uncorrelated), what is the expected spectral radiance, B ?
- How does the uncertainty change, if there is a correlation of $\rho(\nu, T)=0.87$?

$$
\left.\sigma_{B}^{2}=4 \sigma_{\nu}^{2}\left(\frac{3 h \nu^{2}}{c^{2}\left(e^{\left(\frac{h \nu}{T k_{B}}\right)}-1\right)}-\frac{h^{2} \nu^{3} e^{\left(\frac{h \nu}{T k_{B}}\right)}}{T c^{2} k_{B}\left(e^{\left(\frac{h \nu}{T k_{B}}\right)}-1\right)^{2}}\right)^{2}\right) I_{\nu}^{2}
$$

$$
B(v, T)=(1.933 \pm 0.534) * 10^{-8} \frac{\mathrm{~J}}{\mathrm{~m}^{2}}
$$

$$
B(v, T)=(1.933 \pm 0.370) * 10^{-8} \frac{\mathrm{~J}}{\mathrm{~m}^{2}}
$$

$$
\left.+\sigma_{T}^{2} \frac{4 h^{4} \nu^{8} e^{\left(\frac{2 h \nu}{T k_{B}}\right)}}{T^{4} c^{4} k_{B}^{2}\left(e^{\left(\frac{h \nu}{T k_{B}}\right)}-1\right)^{4}}\right\} I_{T}^{2}
$$

Problem 2.2

Problem 3.1

3.1 (15 points) Let $f(x)$ be a PDF defined as $f(x)=C\left(1-e^{-a x}\right)$ for $x \in[0,2]$ and $a=2$.

- What is the mean and RMS of $f(x)$? Also, what is the value of C ?
- What method(s) can be used to produce random numbers according to $f(x)$? Why?
- Produce 500 random numbers distributed according to $f(x)$ and plot these.
- Fit the numbers you produced above leaving a as a floating parameter.
- Let u be a sum of 5 random values from $f(x)$. Produce 1000 values of u and test if they are consistent with a Gaussian distribution?

$$
\mu=1.17 ; \quad \sigma=0.51
$$

Calculating the mean (and even plotting it), it is always healthy to consider, if this is reasonable!

Problem 3.1

Most fitted nicely with a Chi2 fit, and most commented on low statistics.

Problem 3.1

Most fitted nicely with a Chi2 fit, and most commented on low statistics.

Problem 3.1

Problem 3.1

Great advanced solution.

Problem 4.1

4.1 (15 points) The National UFO Reporting Center (NUFORC) has since 1974 catalogued reported UFO sightings. A subset of the data with 64719 entries containing date, time, place, shape, and duration of observation can be found at www.nbi.dk/~petersen/data_UfoSightings.txt.

- Plot the distribution of duration of observation, and calculate both mean and median.
- Do these durations follow the same distribution on the East and West coast?
- What is the correlation between day in the year and time of the day of observation?
- Considering only the West Coast, is the distribution of number of observations uniform over the seven week days? How about when considering only Monday to Thursday?

Problem 4.1

Problem 4.1

Figure 7: The two different distributions look the same to the eye.

Problem 4.1

Figure 7: The two different distributions look the same to the eye.
Quantify, please...

Useful plot?

Figure 10: on y-axis we have day in year, on x -axis we have time of the day

Problem 4.1

The linear correlation is 0.024 , which is small. But that does not exclude (co)relations...

Problem 4.1

The linear correlation is 0.024 , which is small. But that does not exclude (co)relations...

Problem 4.1

The weekly distribution is clearly not flat. Considering Monday-Thursday, it is on the verge of being it. A simple Chi2 fit is the solution... p-value $=0.022$

Typical problems

Problem 4.1:

1. Not enough error bars on fitted data. Really tough to judge ChiSquare without the whole picture!
2. Some very advanced (although not necessarily fruitful) fitting to the 2 d histograms - nice!
3. Lots of weird p-values
4. Lots of folks made one draw from a uniform distribution and then argued with a single Pearson ChiSquare for the constancy of the observations without commentary on the method. Very few did the fit for a constant value.
5. Uninformative plots
6. Some folks accepted hypothesis outright, instead of "rejecting the null" didn't penalise this.
7. Not enough plots to argue from, in general.
8. If they plotted the 2 d histogram (or even scatterplot), then they usually got the pcorr ok.

Problem 4.2

Problem 4.2

Problem 4.2

4.2 (13 points) To test the fairness of dice, you roll 12 dices and count the number 5 s and $6 \mathrm{~s}\left(N_{56}\right)$. Repeating this many times yielded the following result:

Number of 5s \& 6s	0	1	2	3	4	5	6	7	8	9	10	11	12
Observed frequency	185	1149	3265	5475	6114	5194	3067	1331	403	105	14	4	0

- What distribution should the number of 5 s and 6 s follow?
- Compare the data with the expected distribution. Does this hypothesis match the data well?
- Fit the data and test if alternative hypotheses match the data better. Also, determine the probability for a 5 or a 6 , and decide if the dice are consistent with being fair.

Subpart 1

The chances of landing a 5 or a 6 on a die should be $p=\frac{2}{6}$. As we can assume they are independent, and we have 12 trials, the should be binomially distributed with siza parameter $N=12$ and probability parameter $p=\frac{2}{6}$.

Subpart 2

As we knew the uncertainties on the counts, and the expected values $f(k)=N \cdot \operatorname{Binomial}(k, 12,2 / 6)$, where N is the total number of trails, we could just do a simple χ^{2} test, which returned a probability of 0.036%, leting us reject that the data follows this pattern.

Subpart 3

Here, we did a simple fit, where we allowed adjustment of the probability, as seen on figure 14 . It found the probability to be 0.337626 ± 0.000845, with a fit probability of 36.88%. Notice that the resulting probability is many sigmas away from $0.333333 . .$. , which leads us to conclude that the dice are not completely fair, with a -slightlyhigher chance of a 5 or a 6 .

Typical problems

Problem 4.2:

1 Many people had n and N as free parameters next to p in the binomial fit, while these should be fixed because the number of dices and throws is known. This gave them a different value for $p(0.335+/-0.005)$, which is less in tension with $1 / 3$.
2 Many didn't quote errors on p, and just concluded that it was similar to $1 / 3$.
3 A lot of people that used the KS test got a wrong value. Many got a p-value of 1 . Not sure what went wrong there.
4 I also found that a lot of people interpreted the question slightly differently. For the second point, they just calculated whether a binomial in general was a good fit, not one specifically with $p=1 / 3$. And for the third point, they tested a Gaussian and Poisson as alternative hypotheses. Some people also didn't understand what was meant by "determine the probability for a 5 or a 6 ".
5 Thinking Poisson because of 26306 repetitions!

Problem 5.1

5.1 (19 points) Gamma ray spectra are used to identify radioactive isotopes in material from the very sharp peaks they produce. The file www.nbi.dk/~petersen/data_GammaSpectrum.txt contains 47173 measurements obtained from uranium ore, where each number refers to a channel number in the detector, which can be translated into an energy (roughly in the 0-1000 keV range).

- The lead isotope ${ }^{214} \mathrm{~Pb}$ produces three known, low energy gamma ray peaks at energies E : $242 \mathrm{keV}(7.4 \%), 295 \mathrm{keV}(19.3 \%)$, and $352 \mathrm{keV}(37.6 \%)$. Fit these three ${ }^{214} \mathrm{~Pb}$ peaks.
- For these three peaks, compare the relative distance $r=\left(E_{3}-E_{2}\right) /\left(E_{2}-E_{1}\right)$ (in channel number) with the corresponding tabular value (in energy). Does the relative distance match?
- The more energetic bismuth ${ }^{214} \mathrm{Bi}$ gamma rays produce peaks at $609 \mathrm{keV}(46.1 \%)$ and 1120 $\mathrm{keV}(15.1 \%)$. From peaks of your choice, determine the energy scale (i.e. how to determine energy from channel number) and test if it is linear.
- Is the energy resolution (i.e. peak width) constant or does it change with energy?
- A theoretical calculation predicts a (small) peak in the spectrum in the range $700-800 \mathrm{keV}$. Does the data support that prediction? And if so, at what energy?
- Do you find any other peaks or features in the spectrum? If so, quantify your findings.

Problem 5.1

While one can try to subtract the background, it is best simply to fit for it.
Advanced fits like these are nice, but it can be done with three separate fits, as the peaks a very independent.

Problem 5.1-3 Gaussians...

Problem 5.1- No fit solution!

Figure 8: Binned data from uranium core, with a bin-width of 1.10.

From Figure 8 the three peaks corresponding to the peaks at energies $242 \mathrm{keV}, 295 \mathrm{keV}$ and 352 keV are visible, within the first 200 channels. In order to fit them I would fit a sum of three Gaussian distributions with mean and standard deviation according to the three peaks, using Chi2Regression with Minuit.
5.1.2 Had the fitting in the previous question worked I would have used the mean from each peak, to calculate a relative distance of the peaks $r_{\text {peaks }}$ and compared it with the relative distance of the energies $r_{\text {energies }}$:

$$
\begin{aligned}
r_{\text {peaks }} & =\frac{\mu_{3}-\mu_{2}}{\mu_{2}-\mu_{1}} \\
r_{\text {energies }} & =\frac{E_{3}-E_{2}}{E_{2}-E_{1}}=\frac{(352-295) \mathrm{keV}}{(295-242) \mathrm{keV}}=\frac{57}{53} \approx 1.0755
\end{aligned}
$$

5.1.3 Depending on how well $r_{\text {peaks }}$ and $r_{\text {energies }}$ match I would choose to determine the energy scale from the three first peaks. Maybe the energy scaling would allow to determine the peaks of 214 Bi gamma rays at 609 keV and 1120 keV , and from those five peaks I would test if it was linear.
5.1.4 From the fits I would determine the peak width, using mean and standard deviation. Using the scaling from 5.1.3 I would determine if the energy resolution changes with energy.
5.1.5 I would assume the small peak in the spectrum range $700-800 \mathrm{keV}$ can be found in data around channel number 420, as I assume the peak at channel number 280 and the peak at channel 350 are from 214Bi gamma rays. Something I would test had I known the energy scale
5.1.6 From the data it appears that at channel number 400 and on the frequency rises. This may be due to background measurements. Furthermore there are a total of 7 visible peaks in data, and only six peaks have been mentioned and could possibly be paired with actual gamma ray peaks in the above. Had I known the energy I might have determined that one of the peaks was just noise, or a value within the range of an actual gamma ray peak.

Problem 5.1

With $P\left(\chi^{2}=198, n d o f=195\right)=0.424$ we seem to have found a peak at (743.9 ± 0.4) keV

Problem 5.1

With $P\left(\chi^{2}=198, n d o f=195\right)=0.424$ we seem to have found a peak at (743.9 ± 0.4) keV

Problem 5.1

Problem 5.1

Problem 5.1 - inspiration

"Doing statistic problems during the entire night is like partying. You can't stop yourself, but the next day you feel miserably..."
[End of an exam solution]

Comment on code sharing!

Moss Results
Tue Jan 22 04:54:30 PST 2019

Out of interest, we ran Moss (Measure Of Software Similarity) on your code, which is an automatic system for determining the similarity of programs (e.g. detecting plagiarism in programs).

Don't worry - nothing suspicious was found. Thank you!

Options -I python -d -m 4
[How to Read the Results I Tips I FAQ I Contact I Submission Scripts I Credits]

Comment on code sharing!

Moss Results
Tue Jan 22 04:54:30 PST 2019

Out of interest, we ran Moss (Measure Of Software Similarity) on your code, which is an automatic system for determining the similarity of programs (e.g. detecting plagiarism in programs).

Don't worry - nothing suspicious was found. Thank you!

Options -I python -d -m 4
Moss Results

Tue Jan 22 05:11:04 PST 2019
Options -I python -d -m 1000000
[How to Read the Results I Tips I FAQ I Contact I Submission Scripts I Credits]

Your results....

Total score	KU ID						
100		100		100		100	
69	djc619	94	pfl888	88.5	rch246	74	hzq483
77.5	cpv752	51.5	hvw680	37.5	fxq291	81	nbf686
98	nhs907	31	ncs601	0	hgj942	34.5	cfg939
68.5	ckz831	58	zts164	56	hfb792	95.5	mpb982
88.5	wkr446	98	pcm615	86	dpf150	35.25	zwx233
0	gsl528	74.5	nwl935	72.5	sgw622	47.5	nqj779
0	jmk397	64	zql906	76.5	bvf365	98	dik339
81	xgt955	57	pdg115	95.5	dwz764	85	
68.5	kwp513	87	bkq651	69.5	sqv821		
76.5	jrz619	80	mfs627	88	kqc695	66.434	Average
75.5	qkg982	94.5	gsr903	88.5	qzk800	0.664	
77	szm331	0	hwl460	64.5	qrd689	72.586	Average - 0s
63.5	qzh229	74.5	zkv499	68	svk776	0.726	
79	zrf802	87.5	tnh658	92	nwb154		
71.5	ptj469	0	gtv101	70	bwr366		
30.5	rbn433	51	gtl238	57.5	dmc472		
46.5	ksj465	0	ksw803	75	lbc622		
67	xj1924	72	htd809	84.5	wjv651		
57.5	xgj708	33	jlw351	79.5	smj783		
51.5	vqx956	62.5	rhf801	102	rqt552		
89	hwl460	56.5	jnr144	37	str224		
75.5	mnk942	68.5	nsi738	76	ngh299		
47		69	pml305	77.5	rng399		
66	kgt154	98	gsc967	0	qvn822		
87	qzs982	0	mhf548	81.5	zn1919		
100	lgb543	71.5	cxq235	63.5	zdl473		
68	pfq906	0	klq995	93.5	pwn274		
72.5	bdl889	80.5	vgj803	98	msk377		
87.5	jhm221	76.5	zws783	86.5	zfj803		
52	mgx632	71	mvw615	76.5	pzj861		
0	mnx938	81	qvb164	94.5	mfv505		
72	hzn955	50.5	rjt488	90.5	bmc999		
9	lxq472	72	zfg663	95	hgb619		
71.5	fcz936	68.5	mzw962	78	jrh351		
80	qxk428	89	hlg223	61	Iwq229		
69	dxp300	81.5	pmx895	75	mds274		

1.1.1	1.1.2	1.2	1.3.1	1.3.2	2.1.1	2.1.2	2.1.3	2.2.1	2.2.2	3.1.1	3.1.2	3.1.3	3.1.4	3.1.5	4.1.1	4.1.2	4.1.3	4.1.4	4.2.1	4.2.2	4.2.3	5.1.1	5.1.2	5.1.3	5.1.4	5.1.5	5.1.6	Total score	KU ID
3	3	4	3	3	5	4	4	4	5	3	3	$3 \quad 3$	3	3	3	3	4	4	4	4	5	3	3	3	3	3	4	100	
2.82	2.65	3.5	2.519	2.257	3.434	3.16	2.368	3.37	4.319	2.227	2.556	2.87	1.602	2.287	2.556	2.866	3.204	2.523	3.454	2.546	2.667	2.343	1.551	1.917	1.505	2.083	1.727	66.434	Average
0.94	0.883	0.875	0.84	0.752	0.687	0.79	0.592	0.843	0.864	0.742	0.852	0.957	0.534	0.762	0.852	0.717	0.801	0.631	0.864	0.637	0.533	0.781	0.517	0.639	0.502	0.694	0.432	0.664	
2.874	2.779	3.5	2.642	2.439	3.434	3.454	2.51	3.37	4.401	2.29	2.629	2.925	1.73	2.47	2.654	3.005	3.426	2.753	3.587	2.75	3.236	2.75	1.861	2.379	2.083	2.778	2.784	72.586	Average - 0s
0.958	0.926	0.88i	0.881	0.813	0.687	0.864	40.628	0.843	0.88	0.763	0.87	60.975	0.577	0.823	0.88	0.751	0.857	0.688	0.897	0.688	0.647	0.917	0.62	0.793	0.694	0.926	0.696	0.726	

Problem 2.1 (tumor depth):

This is essentially the TableMeasurement problem (with less statistics). Especially the measurements without uncertainties gave rise to problems.

Problem 3.1.4 (generating numbers):

Fitting the 500 numbers gave rise to bins with low statistics (unless you binned coarsely!).

Problem 4.2 (Weldon's dice):

It was clear to most, that this was Binomial, but realising that the dice are not exactly fair was harder! Simply plotting (even without errors) was NOT enough. $p(5+6)=0.3378+-0.0008$, which is $>5 \sigma$ from $1 / 3$.

Problem 5.1 (Gamma spectrum):

The second problem on the ratios required proper error propagation, which few did.
The fourth problem on the peak resolution (i.e. fitted widths) was a matter of comparing them (ChiSquare).
The last problem is harder, as a "general open search" is less textbook and more reality!

- There was a double peak barely significant.
- There was a change in the background level.

