Applied Statistics

ProblemSet Solution and Discussion

“Statistics is merely a quantisation of common sense”



Problem 1.1

1.1 (6 points) Little Peter goes to the casino and puts money on black (p = 18/37).
e In 50 games, what are the chances that he will win exactly 25 times? 26 times or more?

e How many times does he have to play in order to be 95% sure of winning at least 20 times?
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Problem 1.1
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Problem 1.2

1.2 (4 points) What is the probability of a Gaussian value to lie between 1.250 and 2.50 away from
the mean?

P(1.250 < < 2.50) = 2 (CDF(2.5) — CDF(1.25)) = 0.1989

Unit Gaussian PDF
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Problem 1.3

1.3 (6 points) The number of S-train delays is counted daily. Assume in the following, that delays are
uncorrelated, and that the number of departures is the same every day.

e What distribution should the number of daily delays follow?

e Days with more than 7 delays are considered “delay days”. If there were 19 “delay days” in
a normal year, what is your estimate for the average number of daily delays?

Independent (?), N large, p small (both possibly varying): Poisson
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Typical mistakes

Problem 1.1:
- Not including 26 in the second problem
- Rounding N to 50, 51, 52, 55 etc

Problem 1.2:

- One-sided gaussian integral

- Misinterpretation of the question, e.g. giving P(x<2.5) and P(x<1.25) without
subtracting them.

Problem 1.3:
- Distribution identified as binomial or gaussian, with or without explanation

- Distribution identified as poissonian, but with missing or wrong explanation
- Forgetting to include 8 in calculation

- Fixing the result as lambda=4+/-2 days, using the squared root of lambda as
uncertainty on mean.



Problem 2.1

2.1 (13 points) A measurement of a tumor depth (in cm) was done using two methods. The first gave
4 measurements with uncertainty while the second gave 12 without, as shown in the table.

With unc. 2.05£0.11 2.61 = 0.10 2.46 £0.13 248 £0.12
Without unc. | 2.69 2.71 2.56 2.48 234 2.79 254 2.68 2.69 258 266 2.70

e Do the measurements with uncertainty agree with each other? Do those without?
e Which of the two methods provide the most accurate positioning?

e What is your best estimate of the tumors position? And with what uncertainty?
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Fit (with uncertainties). ¢ = 2.404x0.057

Prob(x?=15.2, Ndof=3) = 0,002

Fit (outher removed): €= 2.532+0.066, Fit (no uncertainties): C =2618 0034,

20 Prob(x*=1.1, Ndof=2) = 0.576 Prob(x?=12.0, Ndof=11) = 0.364
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Problem 2.1

Probability
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Problem 2.1

Tumor position in centimeters

Tumor position
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Problem 2.1

Some rejected points among
those without uncertainties!

We also want to look at the measurements without uncertainty. Here we find the mean and standard
deviation of the measurements to be: p = 2.6183 £ 0.0357, std = 0.1236. Again we look to see how
far the measurements are from the mean. This time we do it with a one sample test, if z is more
than 30 away, we reject the measurement:

Measurement #  z-value

Measurement 1 —2.0l0 = accept
Measurement 2 —2.57T0 = accept
Measurement 3 1.640 = accept
Measurement 4 3.880 = reject
Measurement 5 7.800c = reject
Measurement 6 —4.810 = reject
Measurement 7 2.200 = accept
Measurement 8 —1.730 = accept
Measurement 9 —2.0lc0 = accept

Measurement 10 1.070c = accept
Measurement 11 —1.170 = accept
Measurement 12 —2.290 = accept




Typical mistakes

Problem 2.1:

— Wrong uncertainty on dataset2: Forgetting to divide rms by squared(N).

— For measurements without uncertainties, using error on mean for distance
and rejection.

— Noting that problem is “low statistics” in case with uncertainties!

— Wrong uncertainty on weighted mean and no chi2 test for weighted mean

— Not excluding first point of datasetl, either because chi2 test missing or

because they are "not a fan" of this approach

— Forgetting to discuss precision

— Not combining the two datasets, after excluding the first point.

— Combining in weighted average, but forgetting to chi2 test

— Combining without excluding first datapoint, even if the chi2 test had failed

— Not giving a final, unique estimation of the depth

r = (2.60+0.03) cm; x° =2.43; p=48.8%




Problem 2.2 3

2.2 (9 points) The spectral radiance B of a body is given by Planck’s Law: B(v,T) = —5——;

where v is the frequency and T is the absolute temperature, while “ eksT —1
h =6.626 x 10734 Js, ¢ = 299.7 x 10° m/s, and kg = 1.381 x 10723 J/K are constants of nature.

e Given values of v = (0.566 £ 0.025) x 10'° Hz and T' = (5.5040.29) x 103 K (uncorrelated),
what is the expected spectral radiance, B?

e How does the uncertainty change, if there is a correlation of p(v,T") = 0.877
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Problem 2.2

frequency / 10~ °)m~2%s 1Hz™!

Chi2 40.844
700 1 k 2.022 +/- 0.084
m 1.427e-08 +/- 1.166e-10
600 - ndf 46
S 7.598e-09 +/- 9.946e-11
N 9.177e-06 +/- 9.196e-08
500 1 Prob 0.688
400 1 As it turns out, the results
are not entirely Gaussian.
300 A
200 -
100 A —— Chi2 fit
[—1 Uncorrelated MC
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Spectral radiance (Jm~2s 1Hz™1) le-8




Problem 3.1

3.1 (15 points) Let f(x) be a PDF defined as f(z) = C(1 — e %*) for z € [0,2] and a = 2.
What is the mean and RMS of f(z)? Also, what is the value of C'?
What method(s) can be used to produce random numbers according to f(x)? Why?

Produce 500 random numbers distributed according to f(z) and plot these.

Fit the numbers you produced above leaving a as a floating parameter.

Let u be a sum of 5 random values from f(z). Produce 1000 values of v and test if they are
consistent with a Gaussian distribution?

| _ : — 0~
0.6 - i uw=1.17, o =0.51
0.5 éi
04 / Calculating the mean (and even

203 plotting it), it is always healthy

0.2 i to consider, if this is reasonable!
01 I — f(x) = C*(1-exp(-2x)

T Mean
0.0 ! ---- RMS
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Problem 3.1

Most fitted nicely with a Chi2 fit, and most commented on low statistics.

Frequency/0.04

354 Entries 500 Entries 500
Chi2 33.454 log(LH) -18.674
ndof 46 Chi2 35.659
Prob 0.916 ndof 46
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a 1.715 +/- 0.406 C 354.474 +/- 33.101
a 1.632 +/- 0.368
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Problem 3.1
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Problem 3.1

Frequency

160
o Good simple solution.
140 Gaussian fit of U values:

Entries 500

Mean 1.212

| Std 0.503

. Chi2 8.881

ndof 17

100 - Prob 0.944

N 331.218 +/- 10.520

mu 6.062 +/- 0.035

go | sigma 1.097 +/- 0.026
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Problem 3.1

Frequency/0.1
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Great advanced solution.

—— Chi2 Fit
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Gauss Fit:

Entries 1000
Chi2 53.276
ndof 77
Prob 0.982
mu 5.871 +/- 0.037
sigma 1.101 +/- 0.028
N 76.116 +/- 2.475

Kolmogorov-Smirnov test:
Mean 5.856

RMS 1.143
D 0.018
Prob 0.888

KS p-value for 100 experiments
10.0

7.5 A

5.0 A1

Frequency/5

2.5 A1

0.0 -
00 02 04 06 08 1.0

p-value
x? p-value for 100 experiments

B (o)} [ee]
1 1 1

Frequency/5

N
1

o
I

00 02 04 06 08 1.0
p-value




Problem 4.1

4.1 (15 points) The National UFO Reporting Center (NUFORC) has since 1974 catalogued reported
UFO sightings. A subset of the data with 64719 entries containing date, time, place, shape, and
duration of observation can be found at www.nbi.dk/~petersen/data_UfoSightings.txt.

e Plot the distribution of duration of observation, and calculate both mean and median.
e Do these durations follow the same distribution on the East and West coast?

What is the correlation between day in the year and time of the day of observation?

Considering only the West Coast, is the distribution of number of observations uniform over
the seven week days? How about when considering only Monday to Thursday?

Distribution of Duration - Short time Distribution of Duration - Long time
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Problem 4.1

Great solution, but

Logarithm of Frequency/64.8
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West Coast:
Entries 14139
Median 180.000
RMS 960.300
Mean 461.972 +/- 8.076
East Coast:
Entries 19569
Median 180.000
RMS 864 .345
Mean 443.061 +/- 6.179
West Coast
East Coast

figure hard to read

Kolmogorov-Smirnov test:
D 0.014
Prob 0.091

Two Sample test:
z 1.860
Prob 0.031
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Problem 4.1
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Figure 7: The two different distributions look the same to the eye.
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Good figure, and there is
ample statistics in each bin
for a ChiSquare test (after
scaling one histogram).
KS-test also OK, though data
in principle needs to be
continuous.
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Problem 4.1
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Figure 7: The two different distributions look the same to the eye.
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Quantify, please...




Useful plot?
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Figure 10: on y-axis we have day in year, on x-axis we have time of the day




Problem 4.1

The linear correlation is 0.024, which is small. But that does not exclude (co)relations...

Month
J F M A M J J A S 0 N D

20

evening

20.25 +/- 0.03
706 </ 6.00 Dividing into sunset (top) and
R 0.09 sunrise (bottom), fitting each
5 part separately based on means
T morning . . o . .
10 or’is S’ ibrasy with uncertainty of points in bin.
g GREAT!
0.00
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OO 50 100 150 200 250 300 350
DayInYear




Problem 4.1
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Problem 4.1

The weekly distribution is clearly not flat. Considering Monday-Thursday; it is
on the verge of being it. A simple Chi2 fit is the solution... p-value =0.022

Plot of number of sightings per day in week

Chisquare uniform fit _ Chisquare uniform fit
26004 T77 with p-value: 6.59e-44 1 with p-value: 0.0222
§ Data § Data
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£ 2200 1 .
(®)]
p{1/1 1 K [ ———— .{ ___________________ . {
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Typical problems

Problem 4.1:

1.

Not enough error bars on fitted data. Really tough to judge ChiSquare
without the whole picture!

. Some very advanced (although not necessarily fruitful) fitting to the 2d

histograms - nice!

. Lots of weird p-values
. Lots of folks made one draw from a uniform distribution and then argued

with a single Pearson ChiSquare for the constancy of the observations
without commentary on the method. Very few did the fit for a constant value.

. Uninformative plots
. Some folks accepted hypothesis outright, instead of "rejecting the null” —

didn’t penalise this.

. Not enough plots to argue from, in general.
. If they plotted the 2d histogram (or even scatterplot), then they usually got

the pcorr ok.



Problem 4.2

Frequency

® e Binomial Prediction
mm Die roll distribution
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5000 1 It looks like a good match

with p = 1/3 Binomial, but...
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Number of 5s and 6s




Problem 4.2

Frequency of outcome

i ' Theoretical distribution

6000 e
: . ¢ Data
5000 A °
)(2: 41.31
4000 - p: 8.478e-05
2000 - ' ' ...the match is terrible!
2000 A
3
1000 - ’
p(5 & 6) = 0.3376 = 0.0008, .
0 - which is 5.1 sigma from 1/3 * ¢ o
2 4 §) 8 10 12

Number of success




Problem 4.2

4.2 (13 points) To test the fairness of dice, you roll 12 dices and count the number 5s and 6s (Nsg).
Repeating this many times yielded the following result:

Number of 5s & 6s | 0 1 2 3 4 5 6 7 8 9 10 11 12
Observed frequency |185 1149 3265 5475 6114 5194 3067 1331 403 105 14 4 O

e What distribution should the number of 5s and 6s follow?
e Compare the data with the expected distribution. Does this hypothesis match the data well?

e Fit the data and test if alternative hypotheses match the data better. Also, determine the
probability for a 5 or a 6, and decide if the dice are consistent with being fair.

Subpart 1

The chances of landing a 5 or a 6 on a die should be p = %. As we can assume they are independent, and we have

12 trials, the should be binomially distributed with siza parameter N = 12 and probability parameter p = 2.

Subpart 2

As we knew the uncertainties on the counts, and the expected values f(k) = N - Binomial(k,12,2/6), where N is the
total number of trails, we could just do a simple x? test, which returned a probability of 0.036%, leting us reject
that the data follows this pattern.

Subpart 3

Here, we did a simple fit, where we allowed adjustment of the probability, as seen on figure 14. It found the
probability to be 0.337626 +0.000845, with a fit probability of 36.88%. Notice that the resulting probability is many
sigmas away from 0.333333...., which leads us to conclude that the dice are not completely fair, with a -slightly-
higher chance of a 5 or a 6.
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Typical problems

Problem 4.2:

1

Many people had n and N as free parameters next to p in the binomial fit,
while these should be fixed because the number of dices and throws is
known. This gave them a different value for p (0.335 +/- 0.005), which is less
in tension with 1/3.

Many didn't quote errors on p, and just concluded that it was similar to 1/3.
A lot of people that used the KS test got a wrong value. Many got a p-value
of 1. Not sure what went wrong there.

I also found that a lot of people interpreted the question slightly differently.
For the second point, they just calculated whether a binomial in general was
a good fit, not one specifically with p=1/3. And for the third point, they
tested a Gaussian and Poisson as alternative hypotheses. Some people also

didn't understand what was meant by "determine the probability fora 5 or a
6/’

5 Thinking Poisson because of 26306 repetitions!



Problem 5.1

5.1 (19 points) Gamma ray spectra are used to identify radioactive isotopes in material from the ve-

ry sharp peaks they produce. The file www.nbi.dk/~petersen/data_GammaSpectrum.txt
contains 47173 measurements obtained from uranium ore, where each number refers to a channel

number in the detector, which can be translated into an energy (roughly in the 0-1000 keV range).

e The lead isotope 214Pb produces three known, low energy gamma ray peaks at energies E:

242 keV (7.4 %), 295 keV (19.3 %), and 352 keV (37.6 %). Fit these three ?'“Pb peaks.

e For these three peaks, compare the relative distance r = (E3 — E3)/(FE2 — E1) (in channel
number) with the corresponding tabular value (in energy). Does the relative distance match?

e The more energetic bismuth 2!“Bi gamma rays produce peaks at 609 keV (46.1 %) and 1120
keV (15.1 %). From peaks of your choice, determine the energy scale (i.e. how to determine

energy from channel number) and test if it is linear.

e Is the energy resolution (i.e. peak width) constant or does it change with energy?

e A theoretical calculation predicts a (small) peak in the spectrum in the range 700-800 keV.
Does the data support that prediction? And if so, at what energy?

e Do you find any other peaks or features in the spectrum? If so, quantify your findings.

Counts;

200 +

100 A

T
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T T T T
110 120 130 140
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150

160
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Problem 5.1

. 200
While one can try to subtract the his _ w6 04
AL - 3 ndf 489
background, it is best simply to fit A 0. 92
. 1 mul 113.51 +/- 0.20
for it. 1751 sigmal 1.22 +/- 0.20
g 5 g N1 59.89 +/- 9.10
Advanced fits like these are nice, 2 "9.24 +/- 0.01
65.80 +/- 1.63
but it can be done with three 1501 mu2 137.73 +/- ©0.06
sigma2 1.20 +/- 0.06
g N2 )l 191.10 +/- 9.05
separate fits, as the peaks a very N2 | 163.85 +7- o.63
5 i 3 ! 1.06 +/- 0.03
independent. 5] N3 34087 +7. 9.72
3-peak fit 100 - ]
60013 =-0.008677 ﬂ
b = 1.552
c=80.14 E
500 N7 = 6852 75|
400
8 300
200
100 A
0_.

100 110 120 130 140 150 160 170 1&0 ]_410 1(-I30 1é0
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Problem 5.1 - 3 Gaussians...

Why will a fit using
i 3 Gaussians not fit
Gaussian fit for the 3 lead peaks: the third peak?
1751 Entries 500
Chi2 557.854
ndof 490
1501 prob 0.018
sigma 46.918 +/- 16.610 :
sigma2 1.172 +/- 0.055 5t
1251 sigma3 1.055 +/- 0.031
> mu 100.029 +/- 10.609
g 100 - mu2 137.739 +/- 0.065
g mu3 163.856 +/- 0.033 |
75
50
25 1
#® Uranium spectrum
0

130 140 150 160 170 180

channel number




Problem 5.1 - No fit solution!

—— Observations

800

600

Frequency

200

0 100 200 300 400 500
Channel Number

Figure 8: Binned data from uranium core, with a bin-width of 1.10.

From Figure 8 the three peaks corresponding to the peaks at energies 242 keV, 295 keV and 352 keV are visible,
within the first 200 channels. In order to fit them I would fit a sum of three Gaussian distributions with mean and
standard deviation according to the three peaks, using Chi2Regression with Minuit.

5.1.2 Had the fitting in the previous question worked I would have used the mean from each peak, to calculate a

relative distance of the peaks 7peqaks and compared it with the relative distance of the energies Tenergies:

_ H3 — M2
Tpeaks =
M2 — [
E3;—E,  (352—205)keV _ 57

R = = —=1.
Tenergies = [ " T (295 2a2)kev 53~ 10700

5.1.3 Depending on how well 7peaks and Tenergies match I would choose to determine the energy scale from the
three first peaks. Maybe the energy scaling would allow to determine the peaks of 214Bi gamma rays at 609 keV
and 1120 keV, and from those five peaks I would test if it was linear.

5.1.4 From the fits I would determine the peak width, using mean and standard deviation. Using the scaling from
5.1.3 I would determine if the energy resolution changes with energy.

5.1.5 I would assume the small peak in the spectrum range 700-800 keV can be found in data around channel
number 420, as I assume the peak at channel number 280 and the peak at channel 350 are from 214Bi gamma
rays. Something I would test had I known the energy scale.

5.1.6 From the data it appears that at channel number 400 and on the frequency rises. This may be due to
background measurements. Furthermore there are a total of 7 visible peaks in data, and only six peaks have been
mentioned and could possibly be paired with actual gamma ray peaks in the above. Had I known the energy I
might have determined that one of the peaks was just noise, or a value within the range of an actual gamma ray

peak.




Problem 5.1

With P(x? = 198,ndof = 195) = 0.424 we seem to have found a peak at
(743.9+£0.4) keV

—— Chi2 Fit Small Peak:
304 1 Data Entries 1064
Chi2 198.149
ndof 195
Prob 0.424
55 - mu 342.944 +/- 0.157
sigma 0.756 +/- 0.138
N 17.402 +/- 2.887
C 3.971 +/- 0.148
w201
g
S
C
%15—
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Problem 5.1

With P(x? = 198,ndof = 195) = 0.424 we seem to have found a peak at
(743.9+0.4) keV

30 A

25 1

20 A

15 A

Frequency/0.23

10 A

—— Chi2 Fit
+ Data

Small Peak:
Entries 1064
Chi2 198.149
ndof 195
Prob 0.424
mu 342.944 +/- 0.157
The peak is significant: sigma 0.756 +/- 0.138
. P N 17.402 +/- 2.887
N / sigma(N) = 6 std. C 3.971 +/- 0.148

N | |...' "dlllllll n'.mu i

i A

Careful with the binning;:

»

¢ Too fine: Too low bin stat for Chi2.
!

e Too coarse: Peak features lost.
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Problem 5.1

Frequency/0.2

—— Single Peak Fit

Second Small Peak Fit:

Double Peak Fit:

o] — Double Peak Fit Entries 1721 Entries 1721
4 } Data cgig 226.?32 cgi% 194.%12
ndo ndo
Prob 0.066 Prob 0.449
35 1 mu 425.376 +/- 0.136 mul 425.371 +/- 0.135
sigma 0.768 +/- 0.131 sigmal 0.794 +/- 0.130
N 21.529 +/- 3.306 N1 22.489 +/- 3.347
30 A C 6.934 +/- 0.197 mu2 421.066 +/- 0.153
sigma2 0.678 +/- 0.122
N2 14.645 +/- 2.842
25 C 6.702 +/- 0.204
20
] L LY
LI l i 1
|| | il 10 | |
il il SV T I
AN LI l_L“_HML_l.h.“l .......... lHJ!lAA il |“L! _____ EJL_I ...... l ........ u_mm_L
BRI i 1 1 1] 1] I
. illidii | | "I ﬁ* * | *" ||| ! | Hm| | I
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Problem 5.1

Frequency/0.55

50
—— Chi2 Fit Ledge fit:
+ Data Entries 1584
Chi2 85.947
ndof 96
Prob 0.759
40 1 L 10.899 +/- 0.870
k 0.660 +/- 0.287
x0 387.772 +/- 0.863
C 9.585 +/- 0.490
30 A
20 - i Tl
10 i
il
0 T T T T T T
360 370 380 390 400 410

Channel Number




Problem 5.1 - inspiration

[Counts]

.y

I
T

o

Source: Uranium ore

Acquisition start date: 01-27-2012
Acquisition live time: 79,200 s
Total counts: 19,959,130

Average count rate: 252.01 counts/s

1000

2000
Channel number

3000

4000




“Doing statistic problems during the entire night is like partying.
You can't stop yourself, but the next day you feel miserably...”
[End of an exam solution]



Comment on code sharing]!

Moss Results

Tue Jan 22 04:54:30 PST 2019

Out of interest, we ran Moss (Measure Of Software Similarity)

on your code, which is an automatic system for determining the

similarity of programs (e.g. detecting plagiarism in programs).
Don’t worry - nothing suspicious was found. Thank you!

Options -l python -d -m 4

[ How to Read the Results | Tips | FAQ | Contact | Submission Scripts | Credits ]

. Fier |  File2  _______[Lines Matched

py I (32°-)

py N (7%%°)

Py R C )

py I (7 %-)

py N (4%)

py I (20%)

py I (3°)
oy (7°-)

py/ I (57-)

py/ I (1)

py/ N )

py I (4 %)

py/ I (3°-)
oy ()
py/ I (>°-)

py I | (437%)
py/ A (6°%)
Py (67-)

py/ e (137-)

py/ I (47-)

py/ I (14%)

py/ I (0°)
py/ I (7°)

py/ I (5°-)

py/ I (127%)

py/ I ©° )

py/ I (4°-)

py/ I (/o)
oy (27)
py/ I (2°)

411
68
82
52
95
84
68
54
69
62
51
43
30
55
77




Comment on code sharing]!

Out of interest, we ran Moss (Measure Of Software Similarity)
on your code, which is an automatic system for determining the

Moss Results similarity of programs (e.g. detecting plagiarism in programs).

Tue Jan 22 04:54:30 PST 2019 Dgn’t worry - nothing suspicious was found. Thank you!

Options -l pvthon -d -m 4
Moss Results

[ Tue Jan 22 05:11:04 PST 2019
Options -I python -d -m 1000000

p| [ How to Read the Results | Tips | FAQ | Contact | Submission Scripts | Credits ]

. Fier | 0 File2 ___[Lines Matched

py| 85%) py. 0/ (23%)
py| 36%) py. 8%) 458
py (31 °/o) Py o) 424

XToT 7]

oy (7°-) oy (7°-) 54
py I (5°-) py/ N (5°-) 69
py/ I (119%) py/ I (1290) 62
@9 EA py/ I © ) 51
oy (<) oy (4°-) 43

py/ I (3°-) py/ I (/) 30
py/ I, 225)  py/ N () 55
py/ I (0°-) py/ I (2 77




Your results....



Total score
100

69
77.5
98
68.5
88.5
0

0

81
68.5
76.5
75.5
77
63.5
79
71.5
30.5
46.5
67
57.5
51.5
89
75.5
47
66
87
100
68
725
87.5
52

0

72

9
71.5
80
69

KU ID

djc619
cpv752
nhs907
ckz831
wkr446
gsl528
jmk397
xgt955
kwp513
jrz619
qkg982
szm331
qzh229
2rf802
ptj469
rbn433
ksj465
xjl924
xgj708
vgx956
hwl460
mnk942

kgt154
qzs982
Igb543
pfq906
bdI889
jhm221
mgx632
mnx938
hzn955
Ixq472
fcz936
qxk428
dxp300

Total score
100

94
51.5
31
58
98
74.5
64
57
87
80
94.5

74.5
87.5
0

51

0

72

KU ID

pfl888
hvw680
ncs601
zts164
pcm615
nwl935
2ql906
pdg115
bkg651
mfs627
gsr903
hwl460
zkv499
tnh658
gtv101
gtl238
ksw803
htd809

33 jlw351

62.5

rhf801

56.5 jnr144

68.5
69
98

0

71.5

80.5
76.5
71
81
50.5
72
68.5
89
81.5

nsl738
pmi305
gsc967
mhf548
cxq235
klq995
vgj803
zws783
mvw615
qvb164
rjit488
zfg663
mzw962
hig223
pmx895

Total score
100

88.5
37.5
0

56
86
72.5
76.5
95.5
69.5
88
88.5
64.5
68
92
70
57.5
75
84.5
79.5
102
37
76
77.5

81.5
63.5
93.5
98
86.5
76.5
94.5
90.5
95
78
61
75

KU ID

rch246
fxq291
hgj942
hfb792
dpf150
sgwe622
bvf365
dwz764
sqv821
kqc695
qzk800
qrd689
svk776
nwb154
bwr366
dmc472
Ibc622
wjv651
smj783
rqt552
str224
ngh299
rng399
qvn822
znl919
zdl473
pwn274
msk377
zfj803
pzj861
mfv505
bmc999
hgb619
jrh351
lwq229
mds274

Total score
100

74

81
34.5
95.5
35.25
47.5
98

85
76.5
79.5
66.434
0.664
72.586
0.726

KU ID

hzq483
nbf686
cfg939
mpb982
zwx233
nqj779
dlk339
dvj919
zqp405
mbc442
Average

Average - 0s




111 1121 121131 132| 211 212 213 (221 222 |3.1.1 3.1.2 313 314 315|411 412 413 414 |421 422 423|511 512 513 514 515 5.1.6 |Total score KU ID

3 3 4 3 3 5 4 4 4 5 3 3 3 3 3 3 4 4 4 4 4 5 3 3 3 3 3 4 100
2.82 265 3.5 2519 2257 3.434 3.16 2.368 3.37 4.319 2.227 2.556 2.87 1.602 2.287 2.556 2.866 3.204 2.523 3.454 2.546 2.667 2.343 1.551 1.917 1.505 2.083 1.727 66.434 Average
0.94 0.883 0.875 0.84 0.752 0.687 0.79 0.592 0.843 0.864 0.742 0.852 0.957 0.534 0.762 0.852 0.717 0.801 0.631 0.864 0.637 0.533 0.781 0.517 0.639 0.502 0.694 0.432 0.664
2.874 2.779 3.5332.642 2439 3.434 3.454 251 3.37 4.401 229 2.629 2.925 1.73 247 2.654 3.005 3.426 2.753 3.587 2.75 3.236 2.75 1.861 2.379 2.083 2.778 2.784 72.586 Average - Os
0.958 0.92€ 0.88:0.881 0.813 0.687 0.8640.628 0.843 0.88 0.763 0.87€0.975 0.5770.823 0.88£0.7510.857 0.688 0.897 0.688 0.647 0.917 0.62 0.793 0.6940.926 0.696 0.726

Problem 2.1 (tumor depth):

This is essentially the TableMeasurement problem (with less statistics). Especially the measurements without
uncertainties gave rise to problems.

Problem 3.1.4 (generating numbers):
Fitting the 500 numbers gave rise to bins with low statistics (unless you binned coarsely!).

Problem 4.2 (Weldon's dice):
It was clear to most, that this was Binomial, but realising that the dice are not exactly fair was harder!
Simply plotting (even without errors) was NOT enough. p(5+6) = 0.3378 +- 0.0008, which is >50 from 1/3.

Problem 5.1 (Gamma spectrum):

The second problem on the ratios required proper error propagation, which few did.

The fourth problem on the peak resolution (i.e. fitted widths) was a matter of comparing them (ChiSquare).
The last problem is harder, as a “general open search” is less textbook and more reality!

 There was a double peak barely significant.

* There was a change in the background level.



