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Hypothesis testing

Suppose in a beer tasting, that someone gets 9 our of 10 right.

Does that prove that the person can taste difference between beers?



Hypothesis testing

Suppose in a beer tasting, that someone gets 9 our of 10 right.

Does that prove that the person can taste difference between beers?

NO!

What we can say is that the result is inconsistent (at some significance
level) with the hypothesis that the person chooses at random.

This leaves us with the alternative hypotheses, that the person can
taste the difference or have cheated (consciously or unconsciously).

In statistics one can never prove a hypothesis directly. However, one
can set up alternative hypotheses and disprove these. That is how one
works in statistics...



Hypothesis testing

Hypothesis testing is like a criminal trial. The basic “null” hypothesis is Innocent
(called Ho) and this is the hypothesis we want to test, compared to an
“alternative” hypothesis, Guilty (called Hj).

Innocence is initially assumed, and this hypothesis is only rejected, if enough
evidence proves otherwise, i.e. that the probability of innocence is very small
(“beyond reasonable doubt”).

Truly innocent Truly guilty
(Ho is true) (H; is true)
Acquittal . & Wrong decision
Right decision
(Accept Ho) Type II error
Conviction Wrong decision . L
. Right decision
(Reject Hy) Type I error

The rate of type I/1I errors are correlated, and one can only choose one of these!



Hypothesis terminology

Ho = Null Hypothesis:
Definition: The initial / simplest hypothesis.
Examples: Data is background, data follows simple model, particle is a pion.

H; = Alternative Hypothesis:
Definition: The alternative to the null hypothesis, possibly more advanced.
Examples: Data is background + signal, data does not follows simple model,
particle is an electron.

a = Significance:
Definition: Probability to reject Hy, even if it is true (aka. “False Positive”).
Example: Finding guilty when innocent. Concluding no signal, even if there.
Note: The signal selection efficiency =1 - a

B=1-Power:
Definition: Probability to accept Hy, even if it is false (aka. “False Negative”).
Example: Acquitting, when guilty. Concluding signal, even if not there.
Note: The misidentification probability = {8




Taking decisions

You are asked to take a decision or give judgement - it is yes-or-no.

Given data - how to do that best?

That is the basic question in hypothesis testing.

Trouble is, you may take the wrong decision, and there are TWO errors:
e The hypothesis is true, but you reject it (Type I).
® The hypothesis is wrong, but you accept it (Type II).

REALITY
Null is True Null is False
1 —
Do Not Reject Null a P
STATISTICAL Correct Type Il error
DECISION: 1-
Reject Null a P
Type | error Correct




Taking decisions

You are asked to take a decision: Given data - how to do that best?

Null Hypothesis

Alternative Hypothesis

STATISTICAL
DECISION:

Do Not Reject Null

Reject Null

Test statistic

REALITY
Nullis True Null is False
1-a B
Correct Type |l error
a 1-B
Type | error Correct




Taking decisions

You are asked to take a decision: Given data - how to do that best?

Null Hypothesis Alternative Hypothesis

Test statistic

The purpose of a test is to yield (calculable/predictable)
distributions for the Null and Alternative hypotheses,
which are as separated from each other as possible (in
order to minimise o and {3).




Measuring separation
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ROC curves

The Receiver Operating
Characteristic or just ROC-
curve is a graphical plot of the
sensitivity, or true positive
rate, vs. false positive rate.

It is calculated as the integral
of the two hypothesis
distributions, and is used to
evaluate the power of a test.

Often, it requires a testing
data set to actually see how
well a test is performing.

Dividing data, it can also
detect overtraining!

Signal efficiency
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ROC curves

The Receiver Operating
Characteristic or just ROC- 1.00°7
curve is a graphical plot of the
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Dividing data, it can also Background efficiency
detect overtraining!
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Where to select?

The ROC curve does not tell you where to make your selection. You
have to figure that out. In searches for signal (S) in background (B),
optimising S/sqrt(B) is often used.
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Which metric to use?

There are a ton of metrics in hypothesis testing, see below. However,
those in the boxes below are the most central ones.

One metric - not mentioned here - is the Area Under the Curve (AUC),
which is simply an integral of the ROC curve (thus 1 is perfect score).
This is often used in Machine Learning to optimise performance (loss).

Predicted condition

True condition

Total - - Accuracy (ACC) =
- - - . _ 2 Condition positive " .

) Condition positive Condition negative Prevalence = 55T population 3 True positive + = True negative
population 2 Total population
Predicted Positive predictive value (PPV), .

. - False positive, P - (PPV) False discovery rate (FDR) =
condition True positive Precision = S False positive
it Type | error 2 True positive 3 Predicted condition positive
positive > Predicted condition positive
Predllc'ted False negative, . False omission rate (FOR) = Negative predictive value (NPV) =
condition True negative 3 False negative 2 True negative
negative Type Il error 3 Predicted condition negative 2 Predicted condition negative

True positive rate (TPR), Recall, Sensitivity, False positive rate (FPR), Fall-out,

probability of detection, Power probability of false alarm Positive likelihood ratio (LR+) = %
_ _ 2 True positive _ _ 2 False positive Diagnostic odds F 3
~ X Condition positive ~ X Condition negative 3 1 Score =
ratio (DOR) Precision - Recall
Specificity (SPC), Selectivity, True LR P o LLULEHIN - InlsigEllL
False negative rate (FNR), Miss rate . v { ) ) ¢ ENR = ﬁ: Precision + Recall
_ 3 False negative negative rate (TNR) Negative likelihood ratio (LR-) = Tx R

~ 2 Condition positive — _ 2 True negative

https:/ /en.wikipedia.org /wiki/Receiver_operating_characteristic
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Example of ROC curves in use

15
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Number of events

Basic steps - distributions
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Background Efficiency

Basic steps - ROC curves
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Background Efficiency

Overall improvement
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Recent example (electron PID)
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In addition to the ROC curves, the ratio
of these are also shown, to illustrate the
improvement as a function of operating
point.

The three new methods clearly
improve on the existing method.

eptance

Ratio LH/MVA Background

This example is from identifying
electrons using Machine Learning in
the ATLAS experiment.

It is the result of applying ML on data,
which solves the problem of differences
between data and simulation.
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Ratio LH/MVA Background Acceptance
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Combined result

Improvements over LH are:
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Testing procedure
&
Typical statistical tests

23
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Testing procedure

Consider an initial (null) hypothesis, of which the truth is unknown.

State null and alternative hypothesis.

Consider statistical assumptions (independence, distributions, etc.)

Decide for appropriate test and state relevant test statistic.

Derive the test statistic distribution under null and alternative hypothesis.
In standard cases, these are well known (Poisson, Gaussian, Student’s t, etc.)

. Select a significance level (a), that is a probability threshold below which null

hypothesis will be rejected (typically from 5% (biology) and down (physics)).
Compute from (otherwise blinded) observations/data value of test statistic .

. From t calculate probability of observation under null hypothesis (p-value).
. Reject null hypothesis for alternative if p-value is below significance level.

H, : p #0.5146

a = 0.10

F, =184

RQ]'(*‘(‘T H() - 0 |

[
o~ 7 F
I R(*‘L](%('T Hy L Reject Hy
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Wi, e R

Testing procedure

H, : p#0.5146

Consider an initial (null) hypothesis, of which the truth is unknown.

State null and alternative hypothesis.

Consider statistical assumptions (independence, distributions, etc.)

Decide for appropriate test and state relevant test statistic.

Derive t iotio dictoilc othesis.

In standa 1. State hypothesis. t's t, etc.)
Selectast 2 Set the criteria for a decision. | ™!

ypothes - (physics)).

Compute 3. COmpUte the test statistic.  statistic t.
From £ ca 4. Make a decision. (p-value).
. Reject NUler—rrypoerreororor——rreerrrorerre—rrp—rerere—ro—ceror—orgaiiCe level.

|
|
|
o | a = 0.10
|
|
- i z
-za =-1.645 0 Rge = 1.645 ,
2 2 F,=184
: i * [ - z [
Reject Hy - 0 | Reject H L Reject H,

7
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Hypothesis testing philosophy

In hypothesis testing, you can never prove a hypothesis.

You can accept a hypothesis, but this does not exclude
accepting other hypothesis.

However, you can reject a hypothesis on the basis that it’s
probability of being correct (p-value) is too small.

Thus, in hypothesis testing, the line of reasoning is to
state a hypothesis opposite of what you want to show, and
then try to reject this hypothesis.

26



Example of hypothesis test

The spin of the newly discovered “Higgs-like” particle (spin 0 or 2?):
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Neyman-Pearson Lemma

Consider a likelihood ratio between the null and the alternative model:

likelihood for null model
likelihood for alternative model

D= —-2In

The Neyman-Pearson lemma (loosely) states, that this is the most powerful
test there is.

In reality, the problem is that it is not always easy to write up a likelihood
for complex situations!

However, there are many tests derived from the likelihood...

28



Likelihood ratio problem

While the likelihood ratio is in principle both simple to write up and powerful:

likelihood for null model

D) ]|
= likelihood for alternative model

...it turns out that determining the exact distribution of the likelihood ratio is
often very hard.

To know the two likelihoods one might use a Monte Carlo simulation,
representing the distribution by an n-dimensional histogram (since our
observable, x, can have n dimensions). But if we have M bins in each

dimension, then we have to determine M» numbers, which might be too much.

However, a convenient result (Wilk’s Theorem) states that as the sample size
approaches infinity, the test statistic D will be x2-distributed with Ngof equal
to the difference in dimensionality of the Null and the Alternative (nested)
hypothesis.

Alternatively, one can choose a simpler (and usually fully acceptable test)...

29



Common statistical tests

® One-sample test compares sample (e.g. mean) to known value: ke it
Example: Comparing sample to known constant (texp = 2.91 £ 0.01 vs. ¢ = 2.99). o (Zf )
T1 — T2
e Two-sample test compares two samples (e.g. means). z =

)2 )2
Example: Comparing sample to control (pexp = 4.1 £ 0.6 VS. Heontrot = 0.7 £ 0.4). \/O-(:Cl) To (:I?g)

® Paired test compares paired member difference (to control important variables).

Example: Testing environment influence on twins to control genetic bias (pair = 0.81 £ 0.29 vs. 0).

® Chi-squared test evaluates adequacy of model compared to data.
Example: Model fitted to (possibly binned) data, yielding p-value = Prob(x2 = 45.9, Ngof = 36) = 0.125

e Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

e Wald-Wolfowitz runs test is a binary check for independence.
® Fisher’s exact test calculates p-value for contingency tables.

® F-test compares two sample variances to see, if grouping is useful.
30



Which test to use?

In principle all statistical tests can be used on every problem, but they are not all
equally powerful, and some might also be biased (low stat.) or otherwise unfit.
Finally, they may not all be equally easy to implement!

The figure of merit is typically the Power of a Test*, defined as (1 — [3), complement
of the false negative rate, 3.
This is thus the test's probability of correctly rejecting the null hypothesis.

Example:
This is a powerful test: Thus, since the result is negative, we can confidently say

that the null hypothesis is not rejected (e.g. the patient does not have the condition).

In medical science, it is typically important to have a powerful test (i.e. low 3),
while in criminal science it is a low type I error rate (i.e. low at), convicting
innocents.

In the end, choosing a test comes down to experience, importance of power, ease
of use, and even standards in the field of research in question.

* Power of a test is often termed sensitivity in biostatistics.

31



Student’s t-distribution

Discovered by William Gosset (who signed “student”), student’s t-distribution

takes into account lacking knowledge of the variance. r( el oy L
VIR r(%) (1 T 7)
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When variance is unknown, estimating it from sample gives additional error:
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< = t: —
o o)



Simple tests (Z- or T-tests)

® One-sample test compares sample (e.g. mean) to known value: ke it
Example: Comparing sample to known constant (pexp = 2.91 £ 0.01 vs. ¢ = 3.00). o (i’ )

T8 i

e Two-sample test compares two samples (e.g. means). z = — —
Example: Comparing sample to control (Utexp = 4.1 £ 0.6 VS. Hcontrol = 0.7 + 0.4). \/O-(:Cl) +0 (:I? 2)

® Paired test compares paired member difference (to control important variables).

Example: Testing environment influence on twins to control genetic bias (pair = 0.81 £ 0.29 vs. 0).

Things to consider:
® Variance known (Z-test) vs. Variance unknown (T-test).
Rule-of-thumb: If N > 10-20 or o known then Z-test, else T-test.

Two-Tailed Versus One-Tailed Hyphothesis Tests

® One-sided vs. two-sided test. Figure A Figure B:
Two-Tailed Test One-Ta.iIedTest
Rule-of-thumb: If you want to test (Lef-Taed Test)

for difference, then use two-sided.
If you care about specific direction
of difference, use one-sided.




Chi-squared test

Without any further introduction...

Nt — Mz B))?
XZ(@) __ Z (y”& )‘;2276’))

® Chi-squared test evaluates adequacy of model compared to data.
Example: Model fitted to (possibly binned) data, yielding p-value = Prob(x2 = 45.9, Ngof = 36) = 0.125

If the p-value is small, the hypothesis is unlikely...
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Chi-squared test
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Kolmogorov-Smirnov test

e Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

1

0.9

0.8

0.7

0.6

0.5

F(x)

0.4

0.3

0.2

0.1

Theoretical CDF: Fx(x)
Empirical CDF: Sn(x)

The Kolmogorov test measures the maximal distance between the integrals of
two distributions and gives a probability of being from the same distribution.
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Kolmogorov-Smirnov test

e Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

50 = * Y ' | y x ' Y I | -
- Nature 486, 375-377 (21 June 2012) ]
40 £ Comparison of host-star 3
o - metallicities for small :
© - and large planets |
Q 30 — 3
o - )
5 f 5
8 20F =
E F .
=) - 3
2 : i
10 3
ot :

-0.5 0.0 0.5

Metallicity

“A Kolmogorov—Smirnov test shows that the probability that the two distributions are not drawn randomly
from the same parent population is greater than 99.96%; that is, the two distributions differ by more than

3.50”. [Quote from figure caption]



Kolmogorov-Smirnov test

e Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

50 = L ’ J I Y ' b ' I I -
- Nature 486, 375-377 (21 June 2012) ]
40 Comparison of host-star Note:
PR me(:al"'c't'esl’ for small The KS-test requires/assumes,
e 4of andilargep anets that the underlying distribution
- is continuous.
) C .
8 20E =
= - .
) - -]
z 5
10 3
ok 5
-0.5 0.0 0.5
Metallicity

“A Kolmogorov—Smirnov test shows that the probability that the two distributions are not drawn randomly
from the same parent population is greater than 99.96%; that is, the two distributions differ by more than

3.50”. [Quote from figure caption]
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Kuiper test

Is a similar test, but it is more specialised in that it is good to detect SHIFTS
in distributions (as it uses the maximal signed distance in integrals).

X (Radians)
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Common statistical tests

ﬁ&“ .' ~'|Il

o compares sample (e.g. mean) to known Value'“ea

Example: Comparing sample to known constant (plexp = 2.91 £ O 01 %0
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o “ é} “e Compares if two distributions are compatible.
Example: (@Q& 1lity between function and sample or between two samples, yielding p-value = 0.87

Example: Comparing sample to C‘a- 41+0.6 Vﬁ ﬁ& +0.4)

e Wald-Wolfowitz runs test is a binary check for independence.
® Fisher’s exact test calculates p-value for contingency tables.
® F-test compares two sample variances to see, if grouping is useful.




Wald-Wolfowitz runs test

Barlow, 8.3.2, page 153

A different test to the Chi2 (and in fact a bit :
orthogonal!) is the Wald-Wolfowitz runs test. ‘

It measures the number of “runs”, defined as | r'y
sequences of same outcome (only two types). * |
| 1

Yes Y
Example: [, * } 1
++++—-——+++——++++++———

Fig 83 A straight line through

If random, the mean and variance is known: twelve data points
O AN AT N=12,N+=6,N.=6
1:21\4' *\—_I_l U=7,0=1.76
H N (7-3)/1.65 = 2.4 G (~1%)
2 2N N_(2N,N_—N) (p=1)(u—2)
N2 (N -1) N-1

Note: The WW runs test requires N > 10-15 for the output to be approx. Gaussian! 4



Fisher’s exact test

When considering a contingency table (like below), one can calculate the
probability for the entries to be uncorrelated. This is Fisher’s exact test.

Row 1 Row 2 Row Sum
Column 1 A B A+B
Column 2 C D C+D
Column Sum A+C B+D N

( AZC ) ( BED ) (A+ B)! (C+ D)! (A+C)! (B + D)!

e N - Al B C! DI NI
A+ B

Simple way to test categorial data (Note: Barnard’s test is “possibly” stronger).
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Fisher’s exact test - example

Consider data on men and women dieting or not. The data can be found in the
below table:

Men Women Row total

Dieting 1 9 10
Non-dieting 1 3 14
Column total 12 12 24

Is there a correlation between dieting and gender?

The Chi-square test is not optimal, as there are (several) entries, that are very
low (< 5), but Fisher’s exact test gives the answer:

10\ [ 14 24\ 10! 14! 12! 12!
p‘( 1 )( 11 >/( 12)‘1!9! 111 31 241 — 0189
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To test for differences between

variances in two samples, one o a o
uses the F-test: -0 )
D Y @ ' (b)
F — _‘ : + F L F
52 ~ - |
i & _—W ! Reject o g
o. — {
o [ (di )it d32
\." (dy z+dp )01 +02
0 _] rB (%l, %_1)
— d1=1, d2=1 ‘
Q i PR d1:2, d2:1 Reject Hy~ Reject H)
~ = d1=5, d2=2
d1=100, d2=1
0 _ d1=100. d2=100 Note that this is a two-sided
o ; : .
N\ \ test. One is generally testing,
o —— if the two variances are the
© | | | | | same.
0 1 2 3 4 5 44



Anderson-Darling Test

A “simple” and powerful test between cumulative data F, and distribution F is

defined as:
@)

n | (Fa(z) = F(2))* w(z) dF (z)

— OO

Here, n is the number of elements in the sample and w(x) is a weighting function.

Choosing w(x) = F(x) (1-F(x)) yields the Anderson-Darling test statistic:

o[ (Fale) - F@)?
e | Ry @

— OO

which has more emphasis on the tails than the above (w(x) =1, i.e. Cramer-von
Mises) test statistic. An alternative is Shapiro-Wilks test, see here for comparison.

The test is implemented in the Python Statistics package (stats), with tests for the
Gaussian, Exponential, Logistic & Gumbel distributions.
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https://www.nbi.dk/~petersen/Teaching/Stat2020/Power_Comparisons_of_Shapiro-Wilk_Kolmogorov-Smirn.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson.html

How many sigmas?

The number of sigmas (or p-value) required to make a claim should perhaps vary,
according to the target of the data analysis.

Louis Lyons has below given his take on it (aimed at particle physics searches).

Search Degree of Impact LEE Systematics | Number
surprise of o
Higgs search Medium Very high Mass Medium 5
Single top No Low No No 3
SUSY Yes Very high Very large Yes 7
By oscillations Medium /low Medium Am No 4
Neutrino oscillations Medium High sin?(26), Am? No 4
Bs — pu No Low/Medium No Medium 3
Pentaquark Yes High /very high | M, decay mode Medium 7
(g —2), anomaly Yes High No Yes 4
H spin # 0 Yes High No Medium 5
4th generation g, 1, v Yes High M, mode No 6
Vy, > ¢ Enormous Enormous No Yes >8
Dark matter (direct) Medium High Medium Yes 5
Dark energy Yes Very high Strength Yes 5
Grav waves No High Enormous Yes 7

From: “Discovering the Significance of 5 sigma”, ArXiv: 1310.1284
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How many sigmas?

The number of sigmas (or p-value) required to make a claim should perhaps vary,
according to the target of the data analysis.

Louis Lyons has below given his take on it (aimed at particle physics searches).

Search Degree of Impact LEE Systematics | Number
surprise of o
Higgs search Medium Very high Mass Medium 5
Single top No Low No No 3
SUSY Yes Very high Very large Yes 7
By oscillations Medium /low Medium Am No 4
Neutrino oscillations Medium High sin?(26), Am? No 4
Bs — pu No Low/Medium No Medium 3
Pentaquark Yes High /very high | M, decay mode Medium 7
(g —2), anomaly Yes High No Yes 4
H spin # 0 Yes High No Medium 5
4th generation g, 1, v Yes High M, mode No 6
Vy, > ¢ Enormous Enormous No Yes >8
Dark matter (direct) Medium High Medium Yes 5
Dark energy Yes Very high Strength Yes 5
Grav waves No High Enormous Yes 7

The more extraordinary the claim, the more extraordinary the evidence needed!
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