Applied Statistics

Mean and Width

“Statistics is merely a quantisation of common sense”
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Overview of subjects
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Defining the mean

There are several ways of defining “a typical” value from a dataset:
a) Arithmetic mean b)Mode (most probably) c)Median (half below, half above)

d) Geometric mean e) Harmonic mean f) Truncated mean (robustness)
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Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

The second (central) moment of the data is called the variance, defined as:
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Note the “hat”, which means “estimator”. It is sometimes dropped...
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Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

For the standard deviation (Std), a.k.a. width or RMSE, it is:
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Note the “hat”, which means “estimator”. It is sometimes dropped...



Why not “just” the naive SD?

Imagine taking 3 independent measurements, and then the mean and SD:
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Above, all went well, because measurements were nicely distributed on both
sides of the mean, and spread out according to SD.



Why not “just” the naive SD?

Imagine taking 3 independent measurements, and then the mean and RMSE:
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Above, all went well, because measurements were nicely distributed on both
sides of the mean, and spread out according to SD.
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However, now the mean is off (not terribly so) and the SD way off (terribly so!).
If we had used the true mean in the formula, it would not have been a problem.
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How incorrect 1s the naive SD?

Such questions can most easily be answered by a small simulation...
Produce N=3 numbers from a unit Gaussian, and calculate the SD estimate:

Distribution of RMS estimates on three unit Gaussian numbers
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So, the “naive” SD underestimates the uncertainty significantly...




How incorrect 1s the naive SD?

Such questions can most easily be answered by a small simulation...
Produce N=5 numbers from a unit Gaussian, and calculate the SD estimate:

Distribution of RMS estimates on five unit Gaussian numbers
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Here, the “naive” SD underestimates the uncertainty a bit...
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SD and Gaussian o relation

When a distribution is Gaussian, the Std. corresponds to the Gaussian width o:

0.3 04
|

0.2
1

34.1%| 34.1%

0.1

0.0

11



Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with
more data?
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What is the uncertainty on the mean? And how quickly does it improve with
more data?
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Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with
more data?
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Example: Fie, 5.

Cavendish Experiment |
(measurement of Earth’s density)
N =29 it

mu = 5.42 =

sigma = 0.333 L |
sigma(mu) = 0.06 | S e
Earth density = 5.42 + 0.06
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Mean and Width
What is the uncertainty on the mean? And how quic m‘:‘u‘(we with

more data?

Exa

¢ is ent
(m&ﬁn’c ot Earth’s density) ,~ .
N =29 3; X
mu = 5.42 3;: R
sigma = 0.333 i 1] |
Sigma(mu) =0.06 ' ! . A r’"’ )N‘ ‘:“w: 3,)"” ; (] -

Earth density = 5.42 + 0.06
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Weighted Mean

What if we are given data, which has different uncertainties?
How to average these, and what is the uncertainty on the average?
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For measurements with varying uncertainty, there is no meaningful SD!
The uncertainty on the mean is:

B8 Vi

Can be understood intuitively, if two persons combine 1 vs. 4 measurements
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What if we

How to ave] Note that when doing a weighted mean,
one should check if the measurements
agree with each other!

Weighted Mean

For measuremei
The uncertainty

Can be understq

This can be done with a ChiSquare test.
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Resolution using InterQuantile Range

A useful measure of resolution is the InterQuantile Range (IQR), as this is not

affected by long tails.

IQR measures statistical dispersion,
calculated as the difference

IQR = Q3 - Q1

The InterQuantile Efficiency (IQE) is
defined as:

IQE = IQR / 1.349

The factor 1.349 = 2 ®-1(0.75)
ensures that IQR = 1 for a unit
Gaussian.
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Skewness and Kurtosis

Higher moments reveal something about a distributions asymmetry and tails:
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