Applied Statistics

Testing random Number

o 26 5

“Statistics is merely a quantisation of common sense”



Random numbers

“Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin.” [John Von Neumann]

Quasi-Random
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Random numbers

“Anyone who considers arithmetical methods of producing random

digits is, of course, in a state of sin.” [John Von Neumann]

Random
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The build-in random number generators are sometimes not optimal!
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Figure 8.1: To test the resclution function cenvolutions and the Monte Carle generation, a large
Mounte Carlo zample of 25 bililon events J2 generated, binned, and compared to the predicticns of
the convelutions. The actoad funciaon gsod s ¢ =20 feoshi (1.50) + 03sinh(1.52) + 01 eos(t) + 0.9sin(2)]
conveluted with a GExp fuuction witl (¢, 5,7 ) = (02, 0.7,0.5), In the upper plots, the red Lislograms
show the predicied values and the biack dots che number of accumulated Moute Carlo events. Io the
lowver plots the roiative difference is chown fn a logarithmie piot The red curve cshows the expected
statastical doeviadion and the black histomeam the actwa! refacve dilfereoce. T (o) the Monee Carlo was
generated nsing a decent randem number generator while in (b), it was generated using the standard
built-in C++ routine. The agreement in (a) soems to be perfect within the statistical precision of 4-3
significant digits. In (b) on the other band, the Monte Carlo deviates slready at 2-3 signiticam digits,

which is unacceptable.

-

T. Kittelmann, master thesis (2002)

Random
numbers




Random numbers

“Most studies find that human
subjects have some degree of non
randomness when attempting to
produce a random sequence of e.q.

digits.”

[Wikipedia, On random numbers produced by humans]
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Testing random numbers

TOUR OF ACCOUNTING |§ i ans
I 3 NINE NINE il vou THAT'S THE
OVER HERE : NINE NINE | sURE PROBLEM
WE HAVE OUR 3 NINE NINE 5| THATS WITH RAN-
RANDOM NUMBER |§ :| RANDOM?  DOMNESS:
GENERATOR. : YOU CAN
5 - NEVER BE
y & E SURE.
2 g
S %
: 3




Testing random numbers

TOUR OF ACCOUNTING Jg il ane
. 8 NINE NINE il You THAT'S THE
OVER HERE § NINE NINE § SURE PROBLEM
WE HAVE OUR 8 NINE NINE | THAT'S WITH RAN-
RANDOM NUMBER |§ :| RaNDOM?  DOMNESS:
GENERATOR. : YOU CAN
- 3 ( NEVER BE
8 E
48 :
2 2
S 3
: 5

Discuss with those sitting next to you (2-3 min),
how you would go about testing, if a series of
digits were random or not.



Testing random numbers

TOUR OF ACCOUNTING Jg il anc
. 8 NINE NINE il vou THAT'S THE
OVER HERE § NINE NINE § SURE PROBLEM
WE HAVE OUR 8 NINE NINE | THAT'S WITH RAN-
RANDOM NUMBER § 3 RANDOM? DOMNESS
$ YOU CAN
GENERATOR..
- 3 k NEVER BE
18 £
3
: 5

In contrast to popular believe, there are ways of testing random numbers.
But it is not easy! A recommended list (Louis Foley, Random.org, 2001) is:
e A chi-square test
e A test of runs above and below the median
e Areverse arrangements test
e An overlapping sums test
e Abinary rank test for 32x32 matrices



Binary Rank Test

A binary rank test for 31x31 matrices:

The leftmost 31 bits of 31 random integers from the test sequence are used to form
a 31x31 binary matrix over the field {0,1}.

The rank is then determined. That rank can be from 0 to 31, but ranks < 28 are rare,
and their counts are pooled with those for rank 28.

Ranks are found for 40,000 such random matrices and a chi-square test is
performed on counts for ranks 31, 30, 29 and <=28.

Le. given that this distribution is known for truly random numbers, you can see if
the distribution of ranks is the same!

DieHard tests
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https://en.wikipedia.org/wiki/Diehard_tests

More tests for randomness

Frequency (monobit)
Freguency (block)
Runs test

Longest run of ones in a block
Binary melnx rank

Discrete founer translorm (speclral)
Nan-overlapping template malching

Qvearlapping template matching

Maurer's universal slatistical
Linear complexily

Serial
Appraximate enlropy
Cumulative sums (cusum)

Random excursions

Random excursions variants

NIST Statistical Test Suite

Defect Detected
Tco many zeroes er ones

Tceo many zeroes cr ones

Qscillation of zeroes and ones oo
fast or too slow

Qscillation of zeroes and ones tco
fast or too slow

Deviation from expecled rank
distribution

Repetitive palterns

Irragular cccurances of a pra-
specified template

Irragular cccurances of a pra-
specified tlemplate

Sequence is compressible

Linear feedback shift register (LFSR)
too short

Non-unifarmity in the joint distribution
for m-length sequences
Nan-unifarmity in the jaint distribution
for m-length sequences

Too many zeroes or ones at either an
early or |ale siage in the sequence
Deviation from the cistribution of the
number of visits of 2 rancom walk to a
certain state

Deviation from the gistribution of the
number of visits (across many

Equally likely (glcbal)
Equelly likely (local)
Sequential dependence (locally)

Sequential dependence (globally)
Linear dependence

Periodic depencence

Pariodic depandence and aqually
likely

Pariodic depandence and agually
likely

Dependeance and equally likely
Dependance

Equally likely
Equally likely
Sequential dependence

Sequential dependence

Sequential dependence

random walcsI to a certain state
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What to use for random seed?

12

[ J. D. Petruccelli]
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NSA and Dual EC DRBG

Cryptography is based on random numbers. One of the four accepted

random number generators (RNG) used for cryptography was
Dual EC_DRBG.

Several academics point out, that Dual_EC_DRBG was a very poor and
possibly “back-doored” pseudorandom number generator! Nevertheless,
one of the large cryptography companies in the US, RSA Security,
continued using it.
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NSA and Dual EC DRBG

Cryptography is based on random numbers. One of the four accepted
random number generators (RNG) used for cryptography was

Dual EC_DRBG.

Several academics point out, that Dual_EC_DRBG was a very poor and
possibly “back-doored” pseudorandom number generator! Nevertheless,
one of the large cryptography companies in the US, RSA Security,
continued using it.

In 2013, Edward Snowden published papers that showed, that the NSA
had put a backdoor in the Dual_EC_DRBG algorithm! The lack of perfect
randomness allowed NSA to break the encryption.

Outputs of multiple independent RNGs can be combined (for example,
using a bit-wise XOR operation) to provide a combined RNG at least as
good as the best RNG used. This is referred to as software whitening.
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