Applied Statistics

Introduction to Machine Learning

“Statistics is merely a quantisation of common sense. Machine Learning is a sharpening of it!”



Comment on “The AI Hype”

Machine Learning is a tool like all others (logic, math, computers, statistics, etc.)

Despite the connotations of machine learning and artificial
intelligence as a mysterious and radical departure from
traditional approaches, we stress that machine learning has a
mathematical formulation that is closely tied to statistics, the
calculus of variations, approximation theory, and optimal

control theory.
[PDG 2024, Review of Machine Learning]

So this is just a sharpening of our tools... albeit a cool sharpening!



Why ML?
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Typical ML Distribution

An ML score distribution from binary classification typically looks as follows:
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:
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What is ML?



What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

“Machine learning programs can perform tasks

without being explicitly programmed to do so.”
[Arthur Samuel, US computer pioneer 1901-1990]

“Little Peter is capable of finding his way home
without being explicitly taught to do so.”
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What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

"A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as

measured by P, improves with experience E.”
[T. Mitchell, “Machine Learning” 1997]

“Little Peter is said to learn from traveling around with
respect to finding his way home and the time it takes, if his
ability to find his way home, as measured by the time it
takes, improves as he travels around.”
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Humans vs. ML
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: Humans:

Computers: Computers:
Non- Humans: Humans:
linear Computers: Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! y



Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: Humans:

Computers: Computers:
Non- Humans: Humans:
linear Computers: Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! 5



Dimensionality and Complexity

Humans & Computers are good at seeing/understanding linear data in few
dimensions:

Waich:

Hzigh.
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Dimensionality and Complexity

However, when the dimensionality goes beyond 3D, we are lost, even for simple

linear data. Computers are not...

Shown is the famous

Fisher Iris dataset:
150 irises (3 kinds) with
4 measurements for each.

4 dimensional data!

Iris Data (redmselosa,greensversicolor,blues=virginica)
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
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This illustration is just a silly attempt at complexity.
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.
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Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! ’a



Types of ML



Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

We will be mostly on this side!
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Two main ingredients:

1. Solutions exists
2. How to find them



Solutions exists

(Technically called Universal Approximation Theorems)

27



Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve
that separates these.

28



Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve
that separates these.

This could be an example:
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Generally, we want to find a function that does this well!
But how to write such a function? In N-dim space?!?




Universal Approx. Theorems

Decision tree
A simple function can be siq
obtained simply by asking -~
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of asking many such
questions, corresponding
to setting a lot of lines.
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obtained simply by asking
a lot of questions:
Question: Is B > 0.237?
Answer: Yes — Red
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Universal Approx. Theorems
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Universal Approx. Theorems

A simple function can be
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Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) '° Let o be a non-
constant, bounded, and monotone-increasing continuous function. Let I,
denote the my-dimensional unit hypercube [0,1]™0. The space of contin-
uous functions on Iy, is denoted as C(Iy,). Then given any function
f € C(Im,) and € > 0 there exists a set of real constants a;, b; and wj;,
wherei=1,...,myand j =1,...,my such that we may define

n i
F(x1,...,Xmy) = ) _ ai0 (Z w;iX;j + b,-) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,

\F(x1,...,Xmg) — f(X1,--.,Xm,)| <€ (5.7)

for all x1,x3,...,Xm, that lie in the input space.




Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) '° Let ¢ be a non-

Summary:

Neural Networks etc. can approximate
functions in any dimension very well!

F(x1,...,%my) = Z a;o kz w;iXj + b,-) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,

\F(x1,..Xmy) — f(X1,. .., Xm,)| <€ (5.7)

for all x1,x3,...,Xm, that lie in the input space.
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Universal Approx. Theorems

Such approximations typically entails a large amount of parameters, for which

the UATs give no recipe on how to find - only that such a construction is possible.
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How to find these

(Technically called Stochastic Gradient Descent)
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Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200-220. ISBN 9780262035613. 40



https://en.wikipedia.org/wiki/Ian_Goodfellow
https://en.wikipedia.org/wiki/Yoshua_Bengio
https://www.deeplearningbook.org/contents/mlp.html#pf25
https://www.deeplearningbook.org/contents/mlp.html#pf25
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780262035613

(Normal) Gradient Descent

The choice of loss function, L, depends on the problem at hand, and in particular
what you find important! You want to minimise this with respect to the model

parameters O: 1 N
L(0) = N ZLz’(@)

In order to find the optimal solution, one can use Gradient Descent, typically
based on the whole dataset:

N
0.1 =0; — VL) =0, — % N VLi(6)

This is the procedure used by e.g. Minuit and other minimisation routines.

Note the very important parameter: Learning rate n. 4



(Nasty) Loss Landscapes

Loss landscapes may (even in 2D) be very
complicated, with many local minima.

.....

arXiv: 1712.09913
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Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

The gradient descent is made stochastic
(and fast) by only considering a fraction
(called a “batch”) of the data, when
calculating the step in the search for
optimal parameters for the algorithm.
This allow for stochastic jumping, that
avoids local (false) minima.

‘_‘_\

Ordinary
Gradient Descent

x‘-"*?\‘

.
™
Y <te
% 8
o .
’
L

Stochastic
Gradient Descent

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200-220. ISBN 9780262035613.
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Stochastic Gradient Descent

In order to give the gradient descent some degree of “randomness” (stochastic),
one evaluates the below function for small batches instead of the full dataset.

N

0,11 =0; — VL) =0; — % N VLi(6)

1

The algorithm thus becomes: <

e Choose an initial vector of parameters w and learning rate 7).
e Hepeat until an approximate minimum is obtained:

<H ‘
e Randomly shuffle examples in the training set. ‘ M K\ "
e Fori1=1,2,...,n,do: . %JLU\ l«(\\‘. L‘\h l

ow:=w—nNVQ;(w). D

-4

[teration |

10 A A A A A A J
< 0 1000 1500 2000 2300 pacs 3500

Not only does this vectorise well and gives smoother descents, but with
decreasing learning rate, it “almost surely” finds the global minimum
(Robbins-Siegmund theorem).
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Learning Rate Schedulers

But, there is no reason to consider a fixed value for the learning rate!

More practically, one would typically adapt the learning rate to the situation:
e When exploring: Use larger learning rate.

e When exploiting: Use lower learning rate (when converging).

Below is illustrated what happens, when the learning rate is right/wrong.

Too low Just right Too high
Jl: ({J | { ": {',) " J( (‘) ﬂ\\ “
F
’_F’ ‘/
™ g
N M" e 4.l""
8 fi 2]
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the rminimum peint which lead to divergent
minimum paint behaviors
From: https://www.jeremyjordan.me/nn-learning-rate/
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Ingredients for ML

So now we know that at least in principle:
e a solution exists (Universal Approximation Theorem) and
e that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:

e actual functions/algorithms for making approximations
Boosted Decision Trees (BDTs) & Neural Networks (NNs)

e knowledge about how to tell them what to learn
Loss functions (and how to minimise these)

¢ a scheme for how to use the data we have available
Training, validation, and testing samples & Cross Validation

46



The linear analysis case

47



Simple Example

Problem: You want to figure out a method for getting sample that is mostly male!
Solution: Gather height data from 10000 people, Estimate cut with 95% purity!

A

Male

Female

Cut
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Simple Example

Additional data: The data you find also contains shoe size!
How to use this? Well, it is more information, but should you cut on it?

Male ) Male
Female | Female
\ Cut Cut?
A > — >
Height Shoe size

The question is, what is the best way to use this (possibly correlated) information!

49



Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
A A A
WD) Q b
N N N
v v 7, ]
()] Q (4}
o 0 O
- - o
v w v
Male Male Male
Female Female Female
Cut? Cut? Cut?
» » »-
Height Height Height

The latter approach is the Fisher discriminant!

It has the advantage of being simple and applicable in many dimensions easily!
50



Shoe size

Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
4 This is what we ol This is actually o1 This is the most
have been doing| .M how tree based B elegant way,
for many years! 9 methods works! @ when possible!
< <
» 7

Male Male

Female Female Female
Cut? Cut? Cut?

Height Height Height

Male

The latter approach is the Fisher discriminant!

It has the advantage of being simple and applicable in many dimensions easily!
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Non-linear cases

While the Fisher Discriminant uses all separations and linear correlations,

it does not perform optimally, when there are non-linear correlations present:

O
Background

Signal

'\

Use Fisher

>
Xl

D

x

Don’t use Fisher

Background
Signal /

>
X]

If the PDFs of signal and background are known, then one can use a likelihood.
But this is very rarely the case, and hence one should move on to the Fisher.

However, if correlations are non-linear, more “tough” methods are needed...
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Tree based models



Decision tree learning

“Tree learning comes closest to meeting
the requirements for serving as an
off-the-shelf procedure for data mining”,

because it:
e isinvariant under scaling and various other transformations of feature values,
* is robust to discontinuous, categorical, and irrelevant features,
e produces inspectable models.

HOWEVER... they are seldom accurate (i.e. most performant)!

[Trevor Hastie, Prof. of Mathematics & Statistics, Stanford]

Again, for tabular data, I tend to disagree with the last statement!
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Decision Trees

A decision tree divides the parameter
space, starting with the maximal
separation. In the end each part has a
probability of being signal or
background.

e Works in 95+% of all problems!

® Fully uses non-linear correlations.

But BDTs require a lot of data for
training, and is sensitive to
overtraining.

Overtraining can be reduced by
limiting the number of nodes and

number of trees.

Decision trees are from before 1980!!!

™ 4

X

h

Background
Signal
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Boosting...

There is no reason, why you can not
have more trees. Each tree is a simple
classifier, but many can be combined!

To avoid N identical trees, one assigns
a higher weight to events that are hard
to classity, i.e. boosting:

Boost weight
First classifier P -

err
/ 1 A"::vlle-;:( on \

3/1'30-:15:(}() = ln[o,;) - h,A l:X:l

A collection

Parameters in event N Individual tree

Boosting is from 1997 (AdaBoost).

N A

X

Background
Signal
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Boosting...

There is no reason, why you can not X T
have more trees_Each tree is a simnle BaCI(gf Ou nd

classifier, but m

el JRETULN. ..

a higher weight

to classity, i.e. b{

increasing the weight /

First classifier

/ of misclassified entries| |x

IBooss (X ) =
]\7(' ollection ‘_" / \ /
Parameters in event N Individual tree \;0 y A
Q
x7>b th

Boosting is from 1997 (AdaBoost).
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Boosting illustrated

Boosting provides a reweighing scheme giving harder cases higher weights.
At the end of training, the trees are collected into an “ensemble classifier”.

1@ »
0 %0 A
O U. 00, @ @ o
0g790 ¢ —— 09 ® o
@O Q@O
Origiral Data Weighted data Weighted data
Ensemble
Classifer
Iz Vv
o000
‘ X 0000
_ 00000
00000

58



Where to split?

How does the algorithm decide which variable to split on and where to split?
There are several ways in which this can be done, and there is a difference
between how to do it for classification and regression. But in general, one would

like to make the split, which maximises the improvement gained by doing so.

In classification, one often uses the average binary cross entropy (aka. “log-loss”):

N
1 R ~

n=1
Here, Yn, is the truth, while @n is the estimate (in [0,1]).

Other alternatives include using Gini coefficients, Variance reduction, and even
ChiSquare. However, in classification the above is somewhat “standard”.
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Housing Prices decision tree

Decision tree for estimating the price in the housing prices data set:

/

samples = 6986
value = 1963348.0471

AN

samples = 4941
value = 1530318.8873

J/

/

SCHOOL_DISTANCE_1 < 1695.405

mse = 9.79228685447e+11
samples = 3444
value = 1259853.806

CONSTRUCTION_YEAR < 1985.5

mse = 5.10892846075e+11
samples = 978
value = 9536961452

o

("SIZE_OF_HOUSE <235.5
mse = 4.99606026506e+12
samples = 1497

L value = 2152551.1784 )

(" POSTAL_CODE < 3680.0
mse = 3.68022716583e+12
samples = 1345

(" POSTAL_CODE <3110.0
mse = 1.16202252824e+13

 \

("SIZE_OF HOUSE < 144.5
mse = 2.36452076724e+12

L value = 2019988.1539 )

SIZE_OF_HOUSE < 462.0
mse = 1.3836907023e+13
samples = 7014
value = 2028954.3037

SPERRKET DSTICE
“Sarmareea.ia

vake o4

\

False

(" POSTAL_CODE < 7980.0
mse = 1.51080057315e+13
samples = 152

L value = 3325559.5197 )

CONSTRUCTION_YEAR < 1812.0
mse = 2.97888770906e+14
samples = 28
value = 18397715.3214

mse = 0.0

samples = 1
value = 74000000.0

v i

SUPERMARKET_DISTANCE_1 < 1224.845
mse = 4.37090668214e+11

samples =

value = 856331.2918

802

SIZE?OF?HOUSE <975
mse = 6.07151144402e+11
samples = 176
value = 1397370.0795

POSTAL_CODE < 3395.0
mse = 2.25780802539e+12
samples = 116
value = 3138769.319

CONSTRUCTION_YEAR < 1993.5
mse = 3.68519260761e+12
samples = 1229
value = 1914391.2335

(" POSTAL_CODE < 42305
mse = 4.84879610682¢e+12
samples = 100

\__ Vvalue =2580827.09 )

SUPERMARKET_DISTANCE_1 <2
mse = 3.17195326885e+1
samples = 52
value = 4757737.2692

/

/

/

\

/ 1\

/__\




Housing Type decision tree

Decision tree for determining, if a house will be sold for more or less than 2Mkr.

L BODE < 2350.0

 \ class =0 )

('SIZE_OF_HOUSE <755 )
gini = 0.4875
samples = 2477
value = [1434, 1043]

(POSTAL_CODE < 2975.0 )
gini = 0.3416
samples = 1638

True

value = [1280, 358]

L class =0

o

('SIZE_OF_HOUSE <88.5)
gini = 0.256
samples = 1221
value = [1037, 184]

L class =0 )

/

(POSTAL_CODE < 2550.0 )
gini = 0.193
samples = 989
value = [882, 107]

class =0

J

SIZE_OF_HOUSE < 116.5
gini = 0.4863
samples = 417
value = [243, 174]
class =0

POSTAL_CODE < 3395.0
gini = 0.4359
samples = 162
value = [52, 110]
class =1

VAN

T

POSTAL_CODE < 3395.0
gini = 0.376
samples = 255
value = [191, 64]
class =0

POSTAL_CODE < 3615.0
gini = 0.4521
samples = 7014
value = [2422, 4592]
class =1

POSTAL_CODE < 2695.0
gini = 0.2484
samples = 688

gini

POSTAL_CODE < 3085.0

samples = 110

=0.32

SIZE_OF_HOUSE < 98.5
gini =
samples = 52

0.4882

POSTAL_CODE < 3175.0
gini = 0.4717
samples = 126

CONSTRUCTION_YEAR < 1970.5

gini = 0.2173
samples = 129



XGboost - a neat little story!
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The HiggsML Kaggle Challenge

CERN analyses its data using a
vast array of ML methods. CERN
is thus part of the community
that developpes ML!

After 20 years of using Machine
Learning it has now become very
widespread (NN, BDT, Random
Forest, etc.)

A prime example was the Kaggle
“HiggsML Challenge”. Most
popular challenge of its time!
(1785 teams, 6517 downloads,
35772 solutions, 136 forums)

i90sIH the HiggsML challenge

nge
May to September 2014

When High Energy Physics maots Machine Learning
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XGBoost history

History |[edit]

XGBoost initially started as a research project by Tiangi Chenl®! as part of the Distributed (Deep) Machine
Learning Community (DMLC) group. Initially, it began as a terminal application which could be configured
using a libsvm configuration file. After winning the Higgs Machine Learning Challenge, it became well known
in the ML competition circles. Soon after, the Python and R packages were built and now it has packages for
many other languages like Julia, Scala, Java, etc. This brought the library to more developers and became
popular among the Kaggle community where it has been used for a large number of competitions.[”)

Higge Boson Machina Learning Challenge

While Tiangi Chen did not win ., .

Higgs|
himself, he provided a method /el
used by about half of the teams, ... ou s totsins
the second place among them!

Use tre ATLAS egoenmert 1 genofy the MOrs dascn

Feardption Fimt Phaceo

For thiS, he gOt a special award s LR R e e
Frizes Second Place:
and XGBoost became instantly  smeemes - fim e i st i ot s o

Trekne Thied Flace

known in the community.

oted C, - Kreminbeatey, France with this code aind medel Josumantyion
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XGBoost algorithm

The algorithms is documented on the arXiv: 1603.02754

XGBoost: A Scalable Tree Boosting System

Tlanqi Chen
University ot Washingion

tcchen@cs.washington.edu

ABSTRACT

Tree boostayg is & higlly ellective and widey usel mechine
learning method. In this paper, we describe a scalable end-
to-emd tree boosting svetem called XCGHoost, which is usec
wodely Ly Cata scentists Lo aclueve stetssclethesarl resulls
on many machine learning challenges. We propose a nove
soarsity-aware algorizhm for sparse data snc weighted quan-
tile sketel for approxumate tree lsarning. Moce caportantly,
we provide insighss on cache access patterns, dase compres-
siom and sherding to build a scalable tres boosting system

By combining these osaglits, XG3oost scales beyond Dillions
of examples using, 2 tewer resources thar existing systems

Keywords

Larpe-scale Machine Learning

Carlos Guestrin
University of Washington

guestrin@cs. washington.edu

problcms. Besices being uscd os & stand-alonc predictor. it
i3 al=o incorporates into recl-world production pipelinzs for
ad click through rate predicsion [13. Finclly, 1t is the de
‘rote choice of cnsemble meshod and is used in challenges
guch as the Neatflix prize [3].

In this pepar, we describe XCBooat, a scalable machine
lcarning systuem for tree Doosting. The system is evailable as
an oper. source package’. The impact of the svstem has bean
widely reoognized (1 a number of machine Jeamning and data
miring challenges, Take tae challenges hoeted by the ma-
chine learning eompetition site Kaggle for example, Among
the 20 challerge winninz solutions * publlshed o Kazgle's
oleg during 2018, 17 colutions used XCBoost. Amaeng those
golutions, eight solely used XGBowst to train the modal,
while mcet others combined XCBooat with neursl nets i1 en
gernblee, For comparison, the second most popular method,

Anar wmaneal wends an ssnad e 11 calutlan- The scmnrns
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XGBoost algorithm

The algorithms is an extension of the decision tree idea (tree boosting), using
regression trees with weighted quantiles and being “sparcity aware” (i.e.
knowing about lacking entries and low statistics areas of phase space).

Unlike decision trees, each regression tree contains a continuous score on each

leaf:
tree1 tree2

N

Y _— ~—_N Y 7 TSN

- —— e ~.
<

3

+2 +0.7 -1 : 0.9
i Q )=2+09=29 f( & 1=-1-09=-1.9

Figure 1: Tree Ensemble Model. The final predic-
tion for a given example is the sum of predictions
from each tree.
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XGBoost

As it turns out, XGBoost is not only very performant but also very fast...

The most important factor behind the success of XGBoost
is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.

But this will of course only last for so long - new algorithms see the light of day
every week... day?

shortly after

Meanwhile, LightGBM has seen the light of day, and it is even faster...
Which algorithm takes the crown: Light GBM vs XGBOOST?

Very good blog with introduction to tree based learning

67


https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/
https://www.analyticsvidhya.com/blog/2016/04/tree-based-algorithms-complete-tutorial-scratch-in-python/

Neural Network models



Neural Networks (NN)

NIURING

NPUT LAVE=1 LAYER 2 ouru-

In machine learning and related fields, artificial neural networks (ANNSs) are
computational models inspired by an animal’s central nervous systems (in particular
the brain) which is capable of machine learning as well as pattern recognition.

Neural networks have been used to solve a wide variety of tasks that are hard to
solve using ordinary rule-based programming, including computer vision and
speech recognition.

[Wikipedia, Introduction to Artificial Neural Network] i



A “Linear Network”

Imagine that we consider a “Linear Network”, and use the (simplest) architecture:
A single layer (linear) perceptron:

t(x) = ag + Z a;T;

As can be see, this is simply a linear regression in multiple dimensions or the
(linear) Fisher Discriminant.

Inpt Hicden Ot
Well, then we could consider putting in vayer e Aol
a hidden (linear) layer:

tt(x) = t(ag + Z a;T;) -

Clurpnt

However, this doesn’t help anything
as combination of linear functions remain linear. It boils down to the Fisher again!

What we need is something non-linear in the function...
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Logistic Regression

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

1.00-
Q
o
& 0.50-
»
2 0.25-
0.00-

Hours Studied
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y (time to boundary)

Logistic Regression

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

The model expands 1
s(x)

naturally with more == 1 4+ e (@—w0)/0x—(y—yo)/0oy
parameters:

Logistic Regression Model with decision threshold
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Neural Networks

Neural Networks combine the input y 1 o
variables using a “activation” function 1 s(x) = e
v ST 1 4 e~al@=zo) |

s(x) to assign, if the variable indicates 27 __

signal or background. 15 P

The simplest is a single layer perceptron: =< = , i
t(.fl?) =i (CLO + E CLi$i) -;l;' ._. Co ,_ Gl

This can be generalised to a multilayer lpu Hicclon Chil gl

laver layoer lzyver

perceptron (shown right, 1 hidden layer):

t(x)=s (ai + Z aihi(:z:)) _—
hz' (ZC) ] (”LU?;O —+ Z wija:j) [nput #2

[aout 73

Output
Activation function can be any
“sigmoidal” function. Fout. 44
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Neural Networks

Neural Networks combine the input
variables using a “activation” function
s(x) to assign, if the variable indicates
signal or background.

The simplest is a single layer perceptron:

t(x)=s (ao + Z az‘l’z‘)

: 1
] s(z) =
0 1+ e—alz—zo) |
i -f y o
5 B
3.4 4 L
e - ' ,‘l.
214 P ’
n — - \ = d
4.1
T v
lip Hic clon
laver ayoer
Input #1

Input #2

[aout 73

[nput 774

Output



Activation Functions

There are many different activation functions, some of which are shown below.
They have different properties, and can be considered a HyperParameter.

Activation Functions

Sigmoid Leaky RelLU
Yy — 1 max(0.1x, x)

o(x) = v _

tanh

Maxout

t.a,nh(:r:) max(w’f‘;r + by, wg x+ bz)

19

RelLU S
] T X : 0
ma.X(O, Q-) - § {(}'(r'ﬂ‘r —1) x<0

For a more complete list, check: https:/ /en.wikipedia.org/wiki/Activation_function
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https://en.wikipedia.org/wiki/Activation_function

Normalising Inputs

While tree based learning is invariant to (transformations of) distributions,
Neural Networks are not. To avoid hard optimisation, vanishing/exploding
gradients, and differential learning rates, one should normalise the input:

20 ;
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Deep Neural Networks

Deep Neural Networks (DNN) are simply (much) extended NNs in terms of layers!

[Tidden laver

L

N

jy ————————» 2, 44— T

Instead of having just one (or few)
hidden layers, many such layers are
introduced.

This gives the network a chance to
produce key features and use them
for many different specialised tasks.

Currently, DNNs can have up to
millions of neurons and
connections, which compares to
about the brain of a worm.

hidden laver 1 hidden lnver 20 hidden laeer 3
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o
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The role of NNs

The reason why NNs play such a central role is that they are versatile:

e Recurrent NN (for time series)

e Convolutional NNs (for images)
e Adversarial NNs (for simulation)
e Graph NNs (for geometric data)
® ctc.

Unlike trees, NNs typically make the “foundation”
of all the more advanced ML paradigms. However,
they are harder to optimise!

This is why trees a great for simpler tasks (i.e. data
that typically fits into an excel sheet [2110.01889]),

while NN are typically used for the more advanced.

Have this in mind, when you attack problems with
ML - and like any other project or analysis, it is
typically good to get a “rough result” fast, and then
to refine it from there.
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Preprocessing Data
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When data is imperfect

So far, we have looked at “perfect” data, i.e. data without any flaws in it.
However, real world datasets are hardly ever “perfect”, but contains flaws that
makes preprocessing imperative.

Effects may be (non-exhaustive list):

e NaN-values and "Non-values" (i.e. -9999)

Wild outliers (i.e. values far outside the typical range)

Shifts in distributions (i.e. part of data having a different mean/width/etc.)
Mixture of types (i.e. numerical and text, from something humans filled out)

It is also important to consider, if entries are missing...
1. Randomly (in which case there should be no bias from omitting) or
2. Following some pattern (in which case there could be problems!).

In case of NaN values, we might simply decide to drop the variable column or
entry row, requiring that all variables/entries have reasonable values.

Alternatively, we might insert “imputed” values instead, saving statistics.
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NaN-values tend to correlate

It is often seen, that several variables have the same source, and thus their NaN
occurrence might be correlated with each other.

This can be tested by substituting 0’s for numerical values and 1’s for NaN
values. By considering the correlation matrix of these substitute 0/1 values, one
gets a pretty clear picture. DR Sn e Rtee e

Typically, some entries are 100%
correlated, as the source of these
variables is shared.

Based on this information, one can
better decide how to deal with these
variables.
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Conclusions

No matter what you plan to do with data, my first advice is always:

Print & Plot

This is your first assurance, that you even remotely know what the data
contains, and your first guard against nasty surprises.

Also, working with others (from know-nothings to domain experts) you will be
required to show the input, and assuring that it is valid and makes sense.

Remember to do so in all your ML work...
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Bonus Slides
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When to apply ML?



(better efficiency, sharper peaks...

When to use ML?

Using ML in an analysis is usually a (favorable) trade-off between:
e Higher statistics — Lower statistical error

unless the cases are simple!)

e Larger data-MC differences — Higher systematic errors

(more inputs, non-linearities...

unless there are good control channels!)

So consider the table of uncertainties from a previous analysis (or estimate
these with a colleague), and ask yourself which of the two are dominant?

Jet multiplicity

Measured cross section
+ (star.) 4+ (avst.) — [lami) [ph)

a jets
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With this in mind, consider if it is worthwhile to apply Machine Learning. o5



Summary & Conclusions

Humans are great for problems of low dimensionality. Linear methods are
great for linear problems.

However, real world problems are often high dimensional and non-linear, i.e.
“complicated”. Here, Machine Learning (ML) can provide a solution, if good
(i.e. many) known cases are available for training.

Large amounts of data with NO known cases can be considered through
“unsupervised” learning, but this is hard and typically less powerful.

ML typically requires high statistics and is not very transparent, and thus
does not apply to simpler and /or low statistics cases.

In the end, simple solutions are often great. But if the case is not one such, ML

is a great way of “easily extracting” the information and boiling it down to a
single / few variable, which summarises the information available.
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Which method to use?

There is no good /simple answer to this, though people have tried, e.g.:

scikit-learn
algorithm cheat sheet

classification

regression

''''''

1LE
dimensionality
reduction
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Which method to use?

There is no good /simple answer to this, though people have tried, e.g.:

scikit-learn
algorithm cheat sheet

classification

rrrrrrr

b sl

dimensionality
reduction
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Train, Validation & Test
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Trammng error
— CV error
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https://www.deeplearningbook.org/contents/ml.html

Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!
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So how can we know, when to stop

| increasing the complexity of our

algorithm?
(i.e. including more trees for BDTs)
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Dividing Data
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How to “use” your data?

If you train you algorithm on all data, you will not recognise overtrain, nor what
the expected performance on new data will be. Thus we divide the data into:

Train Dataset
* Set of data used for learning (by the model), that is, to fit the parameters to
the machine learning model using stochastic gradient descent.
Valid Dataset
* Set of data used to provide an unbiased evaluation of intermediate models
fitted on the training dataset while tuning model parameters and
hyperparameters, and also for selecting input features.
Test Dataset
* Set of data used to provide an unbiased evaluation of a final model fitted

on the training dataset.

Train Valid Test
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How to do the division?

You can of course do this yourself with your own code, but there are specially
prepared functions for the task:

Scikit-Learn method:

from sklearn.model_selection import train_test_split

X_train, X_rem, y_train, y_rem = train_test_split(X, y, train_size=0.8)

X_valid, X_test, y_valid, y_test = train_test_split(X_rem, y_rem, test_size=0.5)

Fast ML method:

from fast_ml.model_development import train_valid_test_split

X_train, y_train, X_valid, y_valid, X_test, y_test =

train_valid_test_split(df, target = *?, train_size=0.8, valid_size=0.1, test_size=0.1)

There are a few important things to remember:

e Always do the data cleaning, selecting, weighting, etc. before splitting!
e [f there is “more than enough” data, then use less than the total.

o If there is “a little too little” data, then use cross validation (next).
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k-fold Cross Validation

In case your data set is not that large (and perhaps anyhow), one can train on
most of it, and then test on the remaining 1/k fraction.

This is then repeated for each fold... CPU-intensive, but easily parallelisable and
smart especially for small data samples.

)
b
4

Dataset
Fold1 Fold2 Fold3 Fold4 Foldd  Foldk

Split the dataset into k randomly sampled independent subsets (folds).

Train classifier with k-1 folds and test with remaining fold.
Repeat k times.
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Getting an uncertainty estimate

The k-fold cross validation (CV) does not only allow you to train on almost all

(1-(1/k)) and test on all the data, but also has a two additional advantages:

e If you consider the performance (“Error” below) on each fold, then you can
also calculate the uncertainty on the performance.

e Since you can test on all data, the uncertainty on the loss estimate goes down.

Training Sets Test Set

_ |

\(
Iteration 1 p» Erron
Iteration 2 » Error;
Iteration 3 » Error, | FError= ;Z Erron

: (=1

Iteration 4 » LTTOT,
lteration 5 » ETTOTS

97



