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“Statistics is merely a quantisation of common sense”
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Law of large numbers

When rolling a normal die and averaging the outcome, it is no surprise that this
converges towards 3.5. With enough rolls, you can get as close as you want!

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

AVERAGE CONVERGES TO EXPECTED VALUE OF 3.5
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Adding random numbers

If each of you chose a random number
from your own favorit distribution®,
and we added all these numbers,
repeating this many times...

What would you expect?

* OK - to be nice to me, you agree to have similar RMSs in these distributions! 4
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Central Limit Theorem:
The sum of N independent continuous random variables x; with means

u; and variances 02 becomes a Gaussian random variable with mean

u = X. i, and variance 02 = ¥, 02 in the limit that N approaches infinity.

(&4



Central Limit Theorem

Central Limit Theorem:

The sum of N independent continuous random variables x; with means
u; and variances 02 becomes a Gaussian random variable with mean
u = X. i, and variance 02 = ¥, 02 in the limit that N approaches infinity.

The Central Limit Theorem holds under fairly general conditions, which means

that the Gaussian distribution takes a central role in statistics...
-

The Gaussian is “the unit” of distributions!

Since measurements are often affected by many small effects,
uncertainties tend to be Gaussian (until otherwise proven!).

Statistical rules often require Gaussian uncertainties, and so
the central limit theorem is your new good friend..
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Central Limit Theorem

Central Limit Theorem:
The sum of N independent continuous random variables x; with means

u; and variances 02 becomes a Gaussian random variable with mean
u = X. i, and variance 02 = ¥, 02 in the limit that N approaches infinity.

"The epistemological value of probability theory is based on the
fact that chance phenomena, considered collectively and on a
grand scale, create non-random regularity."

[Andrey Kolmogorov, Soviet mathematician, 1954]

"Nowadays, the central limit theorem is considered to be the
unofficial sovereign of probability theory.”
[Henk Tijms, Dutch mathematician 2004]




Example of Central Limit Theorem

Take the sum of 100 uniformm numbers!

Repeat 100000 times to see what distribution the sum has...
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Hist_Sum
Entries 100000
Mean 0.002193
RMS 1.003
%2 1 ndf 58.35/84
Prob 0.9851
Constant 3981=15.4

Mean  0.001794 = 0.003169

Sigma 1.002 = 0.002

The result is a bell shaped curve, a so-called normal or Gaussian distribution.

It turns out, that this is very general!!!




Example of Central Limit Theorem

Now take the sum of just 10 uniform numbers!

Hist_Sum H ist_Sum

4000 - Entries 100000
E Mean 0.0008772

3500 —
— RMS 1
3000 :_ %% | ndf 205.7173
2500 :— Prob 8.644e-17
2000 :_ Constant 3996 + 15.1
E Mean 0.002425+ 0.003160

1500 —
E Sigma 0.9965 + 0.0021

1000 —

500 —
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Example of Central Limit Theorem

Now take the sum of just 5 uniform numbers!

Hist_Sum Hist Sum
4000 :_ Entries 100000
5 Mean -0.0004084
3500 —
- RMS 1.002
3000 - %2 | ndf 558.9 / 66
2500 — Prob 0
2000 f_ Constant 4018 + 14.9
- Mean  0.00651+ 0.00315
1500 —
= Sigma 0.9878 + 0.0019
1000 —
500 —
" = P
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Example of Central Limit Theorem

Now take the sum of just 3 uniform numbers!

Hist_Sum Hist_ Sum
= Entries 100000
4000 —
- Mean -0.002565
3500 —
= RMS 1
3000 ;— %2 I ndf 2842 | 57
2500 — Prob 0
2000 - Constant 4125+ 14.9
= Mean -0.01674 = 0.00305
1500 —
= Sigma 0.941= 0.002
1000 —
500 —
; E e ——
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Example of Central Limit Theorem

This time we will try with a much more “nasty” function. Take the sum of
100 exponential numbers! Repeat 100000 times to see the sum’s distribution...
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It doesn’t matter what shape the input PDF has, as long as it has finite mean
and width, which all numbers from the real world has! Sum quickly becomes:

Gaussian!!!

It turns out, that this fact saves us from much trouble: Makes statistics “easy”! 13



Example of Central Limit Theorem

Looking at z-coordinate of tracks at vertex from proton collisions in CERNs
LHC accelerator by the ATLAS detector, this is what you get:
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The Gaussian distribution

It is useful to know just a few of the Range Inside

most common Gaussian integrals:

0.4

0.3

0.2

0.0 0.1

Outside
+ 1o 68 % 32 %
+ 20 95 % 5 %
£ 3cE 99.7 % 0.3 %
+ 50 99.99995 %  0.00005 %

34.1% 34.1%

15



Summary

The Central Limit Theorem

...1s your good friend because it...

ensures that uncertainties tend to be Gaussian

...which are the easiest to work with!
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