Applied Statistics

The Chi-Square Distribution, Fit & Test

The Chi-Square fit is also (originally) known as Method of Least Squares,
though this method does not include uncertainties on the data points involved.

“Statistics is merely a quantisation of common sense”
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Ophiuchus

The dlscovery of Cereé
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*- Theta Ophiuchi

On the 1st of January 1801 Giuseppe Piazzi discovered “new light” and could follow this comet/planet
until 11th of February. He published the positions, but duie to Ceres being behind the sun, it would be out
of sight until the following winter. Following the calculations of a 24 year old mathematician/physicist, it
was recovered on the 81st of December 1801 by von Zach and H. Olbers. |

The young man’s name was Catl Friedrich Gauss, and the method he used /invented for this was...



*- Theta Ophiuchi

On the 1st of January 1801 Giuseppe Piazzi discovered “new light” and could follow this comet/planet
untif 11th of February. He published the positions, but due to Ceres being behind the sun, it would be out
of sight until the following winter. Following the calculations of a 24 year old mathematician/physicist, it
was recovered on the 81st of December 1801 by von Zach and H. Olbers. |

The young man’s name was Catl Friedrich Gauss, and the method he used /invented for this was...

..method of least squares!



Method of Least Squares

The problem at hand is determining the curve that best fitted data:

Equation of fitted line:éy = 0.40x+0.51

Sum of areas = 0.51

The “best fit” is found by minimising the sum of the squares...

Originally, uncertainties were not included (not “invented” yet!)



Method of Least Squares

The method of least squares is a standard approach to the approximate
solution of overdetermined systems, i.e. sets of equations in which
there are more equations than unknowns.
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The most important application is in data fitting. The best fit in the
least-squares sense minimises the sum of squared residuals, a residual
being the difference between an observed value and the fitted value
provided by a model.



Method of Least Squares

The problem at hand is determining the curve that best fitted data:
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Originally, uncertainties were not included (not “invented” yet!)




MultiDim Linear Regression

The advantage of the linear regression (without uncertainties) is that it can be
done “easily” in multiple dimensions.

This has been used in several fields of science, in particular economy, but also
medicin.

The model typically used is given below, and the analysis called “ANOVA”.
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Method of Least Squares

Look at the figure below, and determine which curve fits best...
lllustration of Least Squares' Method
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Well, what do you define as “best”? o



Method of Least Squares

Look at the figure below, and determine which curve fits best...
lllustration of Least Squares' Method
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Well, what do you define as “best”? And how good is it?!? y



Method of Least Squares

Look at the figure below, and determine which curve fits best...
lllustration of Least Squares' Method
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method
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Well, what do you define as “best”? ”



Defining the Chi-Square

Problem Statement: Given N data points (x,y,0y), adjust the parameter(s)
O of a model, such that it fits data best.

The best way to do this, given uncertainties o; on y; is by minimising:

XQ(H) = Z (yz ¥ fg(;vza 9))2

The power of this method is hard to overstate!
Not only does it provide a simple, elegant and unique way of fitting

data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!

14



Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

————  Prob(y2= 62.1, Ndof=42) = 0.024
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Well, what do you define as “best”? The Chi2 quantifies this!
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method
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Well, what do you define as “best”? The Chi2 quantifies this!
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Chi-Square method

Look at the figure below, and determine which curve fits best...

lllustration of ChiSquare Method

Not bad
3 ———  Prob(y2= 62.1, Ndof=42) = 0.024 / either!
Prob (2= 50.3, Ndof=42) = 0.179 JEE
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Well, what do you define as “best”? The Chi2 quantifies this!
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

- Sine function + constant
Two 2. deg. polynomia
| — 3. deg. polynomium

4. deg. polynomium - qubic term

1 0 1 2 3 4

What about now with larger errors?
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Chi-Square method

Look at the figure below, and determine which curve fits best...

lllustration of ChiSquare Method
of
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What about now with larger errors?
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Chi-Square method

Look at the figure below, and determine which curve fits best...

lllustration of ChiSquare

Meth
ethod With larger errors
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What about now with larger errors?



Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method
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What does smaller errors do?
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method
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What does smaller errors do?
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

S ———  Prob(y2= 84.5, Ndof=42) = 0.000
= Prob(x2= 65.8, Ndof=42) = 0.011
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What does smaller errors do?
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Defining the Chi-Square

Problem Statement: Given N data points (x,y,0y), adjust the parameter(s)
O of a model, such that it fits data best.

The best way to do this, given uncertainties o; on y; is by minimising:

XQ(H) = Z (yz ¥ fg(;vza 9))2

The power of this method is hard to overstate!
Not only does it provide a simple, elegant and unique way of fitting

data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!

25



Defining the Chi-Square

Problem St

Note that when doing a weighted mean,

The best w

one should check if the measurements
agree with each other!
This can be done with a ChiSquare test.

larameter(s)

imising:

N

(yi 7 8 f(aj%v 6)))2
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Weighted mean & ChiSquare

The weighted mean is actually an analytical ChiSquare minimisation to a
constant. The result is the same, and one can then calculate Prob( 2, Ndof).

Example:

Data (from pendulum experiment) could be four length measurement (in mm):

d:[17.8 £0.5,18.1 £0.3,17.7 £ 0.5,17.7 =+ 0.2]

The output from the above data is (many digits for checks only):

Mean = 17.8098 mm
Error on mean = 0.15057 mm
ChiSquare = 1.28574
Ndof =3
Probability =0.7325213

NOTE: This seems a very nice (and precise) result, and it may very well be.
BUT, it might also be, that we all four estimated it from the same photo or
similarly, which could be biased by an angled view. Then we would be fooling

ourselves. We will discuss such “systematic uncertainties” more! »7



Weighted mean & ChiSquare

The weighted mean is actually an analytical ChiSquare minimisation to a
constant. The result is the same, and one can then calculate Prob( 2, Ndof).

Example:

Data (from pendulum experiment) could be four length measurement (in mm):

d:[17.8 £0.5,18.1 £0.3,17.7 £ 0.5,17.7 =+ 0.2]

The output from the above data is (many digits for checks only):

Mean = 17.8098 mm
Error on mean = 0.15057 mm
ChiSquare = 1.28574
Ndof =3
Probability =0.7325213

d=(17.81+0.15) mm
p(¥*=1.3, N4or=3) = 0.73

NOTE: This seems a very nice (and precise) result, and it may very well be.
BUT, it might also be, that we all four estimated it from the same photo or
similarly, which could be biased by an angled view. Then we would be fooling

ourselves. We will discuss such “systematic uncertainties” more!

28



Why the ChiSquare is great

29



Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

30



Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

lllustration of Number of Degrees of Freedom

>
6.5

— %= 0.0

6 Linear: p1
5.5
5
4.5
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Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

lllustration of Number of Degrees of Freedom

>

6.5

1T IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

— %= 0.0

Linear: p1

This can only be done
in one (unique) way:

Ndof = 0!

2.5 3
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Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

lllustration of Number of Degrees of Freedom

>

— %= 0.0

Linear: p1
— %= 0.0

>

This can only be done
in one (unique) way:

Ndof = 0!

1 1.5 2 2.5 3

Exponential
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Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

lllustration of Number of Degrees of Freedom

>

_ X2= 14.5 Linear: p1
— ¥2=20.4 |

. Now there is one
Exponential

point “too many”:
| Ndof =1

0.5 1 1.5 2 2.5 3 3.5

X
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Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

>

6

lllustration of Number of Degrees of Freedom

Exponential

Of course for pol2 the
solution is still unique:

Ndof=0

3.5
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Number of degrees-of-freedom

The number of degrees-of-freedom, Ndof, can be calculated as the
number of points in the fit minus the number of parameters in the fit
function:

Ndof = Ndata points — Nfit variables

lllustration of Number of Degrees of Freedom

- With 39 points

and 3 parameters:

E | ||||||||||%||||||| Ndof = 36

llllllllllllllllllllllllllllllllllllllll
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The Chi-Square distribution and test

The Chi-Square distribution for Ngof degrees of freedom is the distribution of
the sum of the squares of Nqof normally distributed random variables.
fi(x) 2 Fi(z) ¥

k=1
03 T ]. E_l _ A,_‘) L.OT
SErey BT T s
0.41 22 F(§) Tl 0.81 —
: — k=6 k=1
0.31 k=9 0671 — k=2
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0.4 =14
— k=6
2
0.2 31,
l 0.0 4 | l
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The Chi-Square test consists of comparing the Chi-Square value obtained from
a fit with the PDF of expected Chi-Square values. This allows the calculation of
the probability of observing something with the same Chi-Square value or
higher...

Rule of thumb: Chi-Square should roughly match Ngos



Chi-Square probability calculation

Given a Chi-square value and a
number of degrees of freedom (Ndof),
one can obtain a “goodness-of-fit”.

It is known, what Chi-square values to
expect given the Ndof. One can therefore
compare to this (Chi-square) distribution,
and see...
what is the probability of getting this
Chi-square value or something worse,
assuming this is the correct fit function!

Example:

A fit gave the Chi-square 7.1 with 5 dof.
The chance of getting this Chi-square or
worse is... (reading the pink bottom curve
(Ndof=k=5)at7.1)...

Chi-square distribution(s)
e

vvvvvvvvvvvv

— k=1
— k=2

k=3
— k=4
—— k=5

...and cumulated.

..............
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Chi-Square probability calculation

Given a Chi-square value and a
number of degrees of freedom (Ndof),
one can obtain a “goodness-of-fit”.

It is known, what Chi-square values to
expect given the Ndof. One can therefore
compare to this (Chi-square) distribution,
and see...
what is the probability of getting this
Chi-square value or something worse,
assuming this is the correct fit function!

Example:

A fit gave the Chi-square 7.1 with 5 dof.
The chance of getting this Chi-square or
worse is... (reading the pink bottom curve
(Ndof=k=5)at7.1)... 1-0.78 =22%

Chi-square distribution(s)
e

vvvvvvvvvvvv

— k=1
— k=2

k=3
— k=4
—— k=5

...and cumulated.

............

8
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Chi-Square probability calculation

In the table below, one can get a quick estimate for low Ngof.

Degrees of freedom (df) x2 value 1€

1 0.004 0.02 0.06 0.15 0.46 1.07 1.64 271 3.84 6.64 10.83
0.10 0.21 0.45 0.71 1.39 241 322 460 599 921 13.82
0.35 0.58 1.01 142 237 3.66 464 6.25 7.82 11.34 16.27
0.71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 13.28 18.47
1.14 1.61 2.34 3.00 4.35 6.06 7.29 9.24 11.07 15.09 20.52
1.63 2.20 3.07 3.83 5.35 7.23 8.56 10.64 12.59 16.81 22.46
2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 18.48 24.32
2.73 3.49 459 553 7.34 9.52 11.03 13.36 15.51 20.09 26.12

© oo N O O~ M

3.32 4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 21.67 27.88
10 3.94 486 6.18 7.27 9.34 11.78 13.44 15.99 18.31 23.21 29.59

P value (Probability) 0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001

Non-significant Significant



Chi-Square probability calculation

In the table below, one can get a quick estimate for low Ngof.

Degrees of freedom (df)

x2 value |16

1 0.004 0.02 0.06 0.15 0.46 1.07 164 271 3.84 6.64 10.83

0.10

Nnag

0.21 0.45 0.71 1.39 241 322 460 599 9.21 13.82

chi2_prob = stats.chi2.sf(chi2_value, Npor)

NEQ 4 N4 4 A0 007900 AcA oo 789 1134 16.27

Python:
0.49 13.28 18.47

sf (survival function) = 1 - CDF 11.07 15.09 20.52

1.63
2.17
2.73

© oo N O O~ M

3.32
10 3.94
P value (Probability) 0.95

2.20 3.07 3.83 56.35 7.23 8.56 10.64 12.59 16.81 22.46
2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 18.48 24.32
3.49 459 5563 7.34 9.52 11.03 13.36 15.51 20.09 26.12
4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 21.67 27.88
486 6.18 7.27 9.34 11.78 13.44 15.99 18.31 23.21 29.59
0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001
Non-significant Significant
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Chi-Square probability interpretation

The Chi-Square probability can roughly be interpreted as follows:
e If x2/ Ndof = 1 or more precisely if 0.01 < p(x2,Ndof) < 0.99,
then all is good.
o If x2/ Ndof » 1 or more precisely if p(x2Ndof) < 0.01,
then your fit is bad, and your hypothesis is probably not correct.
o If x2 / Ndof « 1 or more precisely if 0.99 < p(x2,Ndof),
then your fit is TOO good and you probably overestimated the errors.

If the statistics behind the plot is VERY high (great than 10¢), then you
might have a hard time finding a model, which truly describes all the
features in the plot (as now tiny effects become visible), and one hardly
ever gets a good Chi-Square probability. However, in this case, one
should not worry too much, unless very high precision is wanted.

Anyway, the Chi-Square still allows you to compare several models,
and determine which one is the better.
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Chi-Square for binned data

If the data is binned (i.e. put into a histogram), then Pearson’s Chi-square applies:

101 121314151617 1819 f—é
B— 20 25 30 35 39— -
=r AN SR B N = Hist Sum
E— 80 85 30 95 99 —E m—
A- OBSERVED Entries 100000
\\ Mean 0.002193
e EXPECTED
. \\\ > RMS 1.003
B8, 2
~ .
. \“\io 721 ndf 58.35 / 84
L {
c o e o S
s A AN Prob 0.9851
2 e, 80 " )
E Lo g, ) Ll 7 Ll
W A Constant 3981+ 15.4
Ty i
N 100 g T,
B Mean  0.001794= 0.003169
Sigma 1.002 = 0.002

(OBS - EXP)2/ EXP~

0887654 3 2 105 o 05 1 2 3 45678910

L e

+3 +2 + [] -1 -2 o
(0BS-EXP) / VEXP
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The formula (based on Poisson statistics) is:
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Chi-Square for binned data

While Pearson’s Chi-square test is quite useful, it has some limitations, especially
when some bins have low statistics.

The expected cell count (E;) should not be too low. Some require 5 or more, and
others require 10 or more. A common rule is 5 or more in 80% of bins, but no cells
with zero expected count. When this assumption is not met, Yates’s Correction
can be applied.

One alternative is to divide by O; when O; is not 0.

. )2
Another alternative is the likelihood . 2 E (OZ EZ )

fit, which does not suffer under X 5l E .
low statistics. i € bin 1

Yet, another alternative is the G-test,
which is more robust at low .
statistics. However, I've never

seen it in use. i € bin
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Example of Chi-Square
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The fact that there are several minima makes fitting difficult/uncertain!
Always give good starting values!!!



Why the ChiSquare is (near) magic
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Example of Chi-Square

Uncertainties need not always be symmetric (though that is usually better!)
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The uncertainty on a parameter is found where the Chi2
has increased by 1 from the minimum.



Flux

Example of Chi-Square

Uncertainties need not always be symmetric (though that is usually better!)
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Please commit to memory!

The uncertainty on a parameter is found where the Chi2
has increased by 1 from the minimum.
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Example of Chi-Square
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Notes on the ChiSquare method

“It was formerly the custom, and is still so in works on the
theory of observations, to derive the method of least squares
from certain theoretical considerations, the assumed normality
of the errors of the observations being one such.

It is however, more than doubtful whether the conditions for
the theoretical validity of the method are realised in statistical
practice, and the student would do well to regard the method
as recommended chiefly by its comparative simplicity and by
the fact that it has stood the test of experience”.

|G.U. Yule and M.G. Kendall 1958]
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