
Applied Statistics 
Probability Density Functions (PDFs)

“Statistics is merely a quantisation of common sense”

Troels C. Petersen
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Probability Density Functions
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Probability Density Functions
A Probability Density Function (PDF) f(x) describes the probability of 
an outcome x:
probability to observe x in the interval [x, x+dx] = f(x) dx

PDFs are required to be normalised:

The expectation value (aka. mean) and the variance (i.e. standard 
deviation squared) are then defined as follows:
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Probability Density Functions
Example:
Consider a uniform distribution:
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Calculating the mean and variance:
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List of statistical testsCumulative distributions functions
Completely basic to every PDF is the 
cumulative distribution function, CDF, 
defined as:

In words, this means that it is the 
probability of getting x, or something 
below that value.

The CDF is used in many ways, and we 
will meet it again soon, when we 
discuss hypothesis testing.

Gaussian PDF

Gaussian CDF
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List of statistical testsCumulative distributions functions
Completely basic to every PDF is the 
cumulative distribution function, CDF, 
defined as:

In words, this means that it is the 
probability of getting x, or something 
below that value.

The CDF is used in many ways, and we 
will meet it again soon, when we 
discuss hypothesis testing.

Exponential CDF

Exponential PDF
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Why PDFs

7

Could we not just use mean and
variance and call it a day?

Well, PDFs makes us able to ask what
the probability of a certain event given
the underlying model (i.e. PDF), and
this allows for new discoveries!



Why PDFs
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Could we not just use mean and
variance and call it a day?

Well, PDFs makes us able to ask what
the probability of a certain event given
the underlying model (i.e. PDF), and
this allows for new discoveries!

On notation:
In the literature it is often we use large letters for a random variable X. 
This means an outcome for an event! If I roll a die, we say that X takes on 
values in {1,2,3,4,5,6}, which is a discrete case.

Small letters are typically real numbers. So we could write: P(X < c), 
which translated means that we calculate the probability P that in one 
event X, we obtain a value of X smaller than the real value c.



The number of PDFs is infinite, and nearly so is the list of known ones:

And surely more!
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Probability Density Functions

https://docs.scipy.org/doc/scipy/reference/stats.html

https://docs.scipy.org/doc/scipy/reference/stats.html


The number of PDFs is infinite, and nearly so is the list of known ones:

And surely more!
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Probability Density Functions

"Essentially, all models are wrong,
but some are useful”

[George E. P. Box, British Statistician, 1919-2013]



Probability Density Functions
An almost complete list of those we will deal with in this course is:
• Gaussian (aka. Normal)
• Poisson
• Binomial (and also Multinomial)
• Uniform
• Exponential
• ChiSquare
• Students t-distribution

You should already know most of these, and the rest will be explained.
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Binomial Poisson ChiSquare

See Barlow chap.3
and Cowan chap.2



Given N trials each with p chance of 
success, how many successes n 
should you expect in total?

This distribution is… Binomial, with
Mean = Np

Variance = Np(1-p)

This means, that the error on a 
fraction f = n/N is:

�(f) =

r
f(1�f)

N

f(n;N, p) =
N !

n!(N�n)!
pn(1�p)N�n
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Binomial, Poisson, Gaussian



f(n;N, p) =
N !

n!(N�n)!
pn(1�p)N�n
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Binomial, Poisson, Gaussian

The binomial distribution was first introduced by 
Jacob Bernoulli in 1713 (posthumously).

The binomial distribution basically consists of two 
elements: The binomial coefficient (green) and the 
probabilities of exactly n such events (blue).

Even though a system has many outcomes, it is 
typically possible to refer to either “success” of 
“failure”.

Assume the probability to have COVID19 is 1%. In a 
sample of 50 people the chance to have 1 or more 
infected is: 1-p(0) = 1 - 0.9950 = 0.60



Binomial, Poisson, Gaussian
You count 100 cars, and see 15 red cars. What is your
estimate of the fraction (i.e. probability) of red cars and 
its uncertainty?

a) 0.150 ± 0.050
b) 0.150 ± 0.026
c) 0.150 ± 0.036
d) 0.125 ± 0.030
e) 0.150 ± 0.081

A friend tells you, that 8% of the cars on Blegdamsvej
are red. What is the chance of that? Could he be right?

From previous page: �(f) =

r
f(1�f)

N
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(0.150 - 0.080) / 0.036 = 1.9 σ
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You count 100 cars, and see 15 red cars. What is your
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its uncertainty?
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Notice - this was actually a hypothesis test!



Binomial, Poisson, Gaussian
Requirements to be Binomial:
• Fixed number of trials, N
• Independent trials.
• Only two outcomes (success/failure).
• Constant probability of success/failure.

If number of possible outcomes is more than two ⇒ Multinomial distribution.

Examples of Binomial experiments:
• Tossing a coin 20 times counting number of tails.
• Asking 200 people if they watch sports on TV.
• Rolling a die to see if a 6 appear (Multinomial for all outcomes!).
• Asking 100 die-hards from Enhedslisten, if they would vote
    for Konservative at the next election!

Examples which aren’t Binomial experiments:
• Rolling a die until a 6 appears (not fixed number of trials).
• Drawing 5 cards for a poker hand (no replacement ⇒ not independent) 18



Binomial, Poisson, Gaussian
If N → ∞ and p → 0, but Np → λ then a Binomial
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Binomial, Poisson, Gaussian
If N → ∞ and p → 0, but Np → λ then a Binomial approaches a Poisson: (see 
Barlow 3.3.1)

In reality, the approximation
is already quite good at e.g.
N=50 and p=0.1.

The Poisson distribution only
has one parameter, namely λ.
Mean = λ
Variance = λ

So the error on a number is...

...the square root of that number!
20

f(n,�) =
�n

n!
e��
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f(n,�) =
�n

n!
e�The error on a 

(Poisson) number...
is the square root 
of that number!!!



Binomial, Poisson, Gaussian
If N → ∞ and p → 0, but Np → λ then a Binomial approaches a Poisson:

In reality, the approximation
is already quite good at e.g.
N=50 and p=0.1.

The Poisson distribution only
has one parameter, namely λ.
Mean = λ
Variance = λ

So the error on a number is...

...the square root of that number!
22

f(n,�) =
�n

n!
e�The error on a 

(Poisson) number...
is the square root 
of that number!!!

A very useful case of this is the error to assign a bin in a histogram,
if there is reasonable statistics (Ni > 5-20) in each bin.



Note: The sum of two Poissons with λa and λb is a new Poisson with λ = λa + λb.
(See Barlow pages 33-34 for proof)
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The error on a 
(Poisson) number...
is the square root 
of that number!!!



Binomial, Poisson, Gaussian
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The Poisson distribution has the advantage that neither the number of trials N 
nor the probability of succes p has to be known - just their product.

A typical use is when dealing with rates in a given interval of time, distance, 
area, volume, etc.



Binomial, Poisson, Gaussian
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The Poisson distribution has the advantage that neither the number of trials N 
nor the probability of succes p has to be known - just their product.

A typical use is when dealing with rates in a given interval of time, distance, 
area, volume, etc.

Example (real from 1898):
There were 122 deaths by horse kicks over 10 different
regiments, over 20 years. What is the predicted number
of deaths in a specific regiment and year?

First we estimate the mean value:

This means that the probability that 0 will die is given by:



Binomial, Poisson, Gaussian
If λ→∞, the Poisson becomes a Gaussian…                          ...and λ > 20 is enough!

26All fields encounter the Gaussian, and for this reason, its scale has many names!

For proof, see
Barlow p.40



Binomial, Poisson, Gaussian
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If λ→∞, the Poisson becomes a Gaussian…                          ...and λ > 20 is enough!



Binomial, Poisson, Gaussian
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However, note that the TAILS are not quite the same!!!
This is the very reason for the difference between Chi2 and (binned) likelihood!

If λ→∞, the Poisson becomes a Gaussian…                          ...and λ > 20 is enough!



Binomial, Poisson, Gaussian

“If the Greeks had known it, they would have deified it. It reigns with serenity and in complete 
self-effacement amids the wildest confusion. The more huge the mob and the greater the 
apparent anarchy, the more perfect is its sway. It is the supreme Law of Unreason. 
Whenever a large sample of chaotic elements are taken in hand and marshalled in the order 
of their magnitude, an unsuspected and most beautiful form of regularity proves to be latent 
all along.” [Karl Pearson]

“If the Greeks had known it, they would have deified it.”
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Range Inside Outside

± 1� 68 % 32 %

± 2� 95 % 5 %

± 3� 99.7 % 0.3 %

± 5� 99.99995 % 0.00005 %

The Gaussian defines
the way we consider
uncertainties.

30

Binomial, Poisson, Gaussian



List of statistical testsStudent’s t-distribution
Given only a small (n obs.) sample (still assumed Gaussian), we don’t know the 
mean μ and width σ well - we only know estimates of them! This changes the 
PDF to: <latexit sha1_base64="wRXu34fYwVdBa5jWzBaIEozwSMY="></latexit>

p(x | ⌫, µ̂, �̂2) =
�( ⌫+1

2 )

�( ⌫2 )
p
⇡⌫�̂2

 
1 +

1

⌫

✓
x� µ̂

�̂

◆2!� ⌫+1
2

⌫ = NDoF = n� 1
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mean μ and width σ well - we only know estimates of them! This changes the 
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“Discovered” by William Gosset, student’s t-distribution takes into account the 
lacking knowledge of the mean and variance (as is the case for small samples).
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Given only a small (n obs.) sample (still assumed Gaussian), we don’t know the 
mean μ and width σ well - we only know estimates of them! This changes the 
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“Discovered” by William Gosset, student’s t-distribution takes into account the 
lacking knowledge of the mean and variance (as is the case for small samples).
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t =
x� µ̂

�̂

When mean and width are poorly known, estimating it from sample gives:

z =
x� µ

�
Gaussian: Student’s:
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List of statistical testsDistribution Overview
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A perhaps simple overview.
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List of statistical testsDistribution 
Relationship
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The different PDFs are 
related.

As can be seen, essentially 
all PDFs “converges”
towards the Gaussian 
(normal) distribution.
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The different PDFs are 
related.

As can be seen, essentially 
all PDFs “converges”
towards the Gaussian 
(normal) distribution.

Don’t worry about 
knowing them all…. 
Through a long life in 
statistics, I have still yet to 
encounter all of these in 
use!



List of statistical testsDistribution Overview

38From: A. Damodaran

I like the following overview of the most common PDFs, though it is far from 
perfect. However, it shows what makes the essential differences between PDFs.

Distributional Choices/Identification



List of statistical testsDistribution Overview
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List of statistical testsSummary of lecture
All PDFs are normalized functions, that describe the probability of getting a 
certain value/outcome from evaluating the PDF function.

Among the most fundamental PDFs are the Binomial, Poisson and Gaussian.

Remember that the error on a (Poisson) number is the square root of that 
number!

Remember that the Gaussian distribution defines the uncertainties, that we 
report on experiments.
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