
Applied Statistics 
Principle of maximum likelihood

“Statistics is merely a quantisation of common sense”

Troels C. Petersen (NBI)
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Likelihood function

“I shall stick to the principle of likelihood…”
                                                               [Plato, in Timaeus]
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Likelihood function

Given a PDF f(x) with parameter(s) θ, what is the chance that with N 
observations, xi falls in the intervals [xi, xi + dxi]?

L(✓) =
Y

i

f(xi, ✓)dxi
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Given a set of measurements x, and parameter(s) θ, the likelihood function is defined 
as: 

The principle of maximum likelihood for parameter estimation consist of 
maximising the likelihood of parameter(s) (here θ) given some data (here x).
There is nothing strange about this - it is exactly the same we do for the ChiSquare!

The likelihood function plays a central role in statistics, as it can be shown to be:
• Consistent (converges to the right value).
• Asymptotically normal (converges with Gaussian errors).
• Efficient (reaches the Minimum Variance Bound (MVB, Cramer-Rao) for large N).

To some extend, this means that the likelihood function is “optimal”, that is, if it can 
be applied in practice.

Likelihood function

L(x1, x2, . . . , xN ; ✓) =
Y

i

p(xi, ✓)

4

V (â) � 1

< (d lnL/da)2 >
<latexit sha1_base64="gCP2V2M6m7huwXnZv2F/N+Y2Ymw="></latexit><latexit sha1_base64="MorciGjndgzzw/QVpv23qHtEvFs="></latexit><latexit sha1_base64="MorciGjndgzzw/QVpv23qHtEvFs="></latexit><latexit sha1_base64="K9SOZQo1/TD2N5nPE/zBFjQ9xi4=">AAACE3icbZC7TsMwFIYdrqXcAowsFhVSywAJCwwIIVgYGIpES6UmVCeO01p1nMh2kKoo78DCq7AwgBArCxtvg1sycPslS5/+c46Ozx+knCntOB/W1PTM7Nx8ZaG6uLS8smqvrbdVkklCWyThiewEoChngrY005x2UkkhDji9DoZn4/r1LZWKJeJKj1Lqx9AXLGIEtLF69k677g1A51A0sNen2IskkNwt8qN6iD0u8MVeCI2bfXxc9Oyas+tMhP+CW0INlWr27HcvTEgWU6EJB6W6rpNqPwepGeG0qHqZoimQIfRp16CAmCo/n9xU4G3jhDhKpHlC44n7fSKHWKlRHJjOGPRA/a6Nzf9q3UxHh37ORJppKsjXoijjWCd4HBAOmaRE85EBIJKZv2IyAJOKNjFWTQju75P/Qnt/1zV86dROTss4KmgTbaE6ctEBOkHnqIlaiKA79ICe0LN1bz1aL9brV+uUVc5soB+y3j4BfLub+g==</latexit>



       Likelihood vs. Chi-Square
For computational reasons, it is often much easier to minimise the logarithm of 
the likelihood function:

In problems with Gaussian errors, it turns out that the log likelihood function 
boils down to the Chi-Square with a constant offset and a factor -2 in difference.

The likelihood function for fits comes in two versions:
• Binned likelihood (using Poisson) for histograms.
• Unbinned likelihood (using PDF) for single values.

The “trouble” with the likelihood is, that it is unlike the Chi-Square, there is NO
simple way to obtain a probability of obtaining certain likelihood value!

@ lnL
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See Barlow 5.6



ChiSquare
Recall, the ChiSquare is a sum over bins in a histogram:

N observed
i

N expected

i

i
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NbinsX
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Binned Likelihood
The binned likelihood is a sum over bins in a histogram:

N observed
i

N expected

i

i

L(✓)binned =
NbinsY

i

Poisson(N expected

i , N observed
i )
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Unbinned Likelihood
The binned likelihood is a sum over single measurements:

i

PDF(xobserved
i )

L(✓)unbinned =
Nmeas.Y
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PDF(xobserved
i )
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Notes on the likelihood
For a large sample, the likelihood is indeed 
unbiased and has the minimum variance - 
that is hard to beat! Also, the binned LLH 
approaches the unbinned version. 
However...

For the likelihood, you have to know your 
PDF. This is also true for the Chi-Square, 
but unlike for the Chi-Square, you get no 
goodness-of-fit measure to check it!

This can be obtained through simulation!

Also, for small statistics, the likelihood is 
not necessarily unbiased, but still fares 
much better than the ChiSquare! But be 
careful with small statistics. The way to 
avoid this problem is also simulation.
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Evaluating the likelihood
As mentioned, it is possible to evaluate a likelihood fit (i.e. get a p-value).
This is done by first fitting the data, and then (given the fit parameters) one 
simulates data according to these parameters, and fit these many times. 

12Finally, you see what fraction of the fits have a worse LLH. Note the Gaussian shape!



The likelihood ratio test
Not unlike the Chi-Square, were one can compare χ2 values, the likelihood between 
two competing hypothesis can be compared (SAME offset constant/factor!).

While their individual LLH values do not say much, their RATIO says everything!

As with the likelihood, one often takes the logarithm and multiplies by -2 to match 
the Chi-Square, thus the “test statistic” becomes:

If the two hypothesis are simple (i.e. no free parameters) then the Neyman-Pearson 
Lemma states that this is the best possible test one can make.

If the alternative model is not simple but nested (i.e. contains the null hypothesis), 
this difference approximately behaves like a Chi-Square distribution with Ndof = 
Ndof(alternative) - Ndof(null). This is called Wilk’s Theorem.
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Nested Models?
What does this “nested” thing mean in Wilk’s Theorem, and why is it essential?

In short:
“Nested” means that the Null hypothesis f(x) is “included” in the Alternative 
hypothesis g(x), and thus that g(x) can do anything f(x) can… and more!

In terms of function spaces:
Let F and G be the function spaces for all versions of f(x) and g(x), respectively.
Then f(x) is nested in g(x) if F is a subspace of G, i.e. G “contains” F: F ⊂ G

Example:
•Null hypothesis: f(x) = Nbkg * exp(-x/τ)
•Alt. hypothesis:  g(x) = Nbkg * exp(-x/τ) + Nsig * Gaussian(μ, σ)
Here, g(x) can do everything that f(x) can do… and more!

The nested requirement ensures that the LLH value of the Alternative Hypothesis is 
always better (i.e. lower for -2LLH) than for the Null Hypothesis, and hence that the 
likelihood ratio (which should follow a ChiSquare distribution) is positive!
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Wilk’s Theorem: Example
Consider two models (hypotheses) for data:
Null: Data is only background (exponential).
Alternative: Data is both signal and background (exponential with Gaussian peak).

The models are not simple but nested: The alternative contains the null hypothesis.  
Therefore, Wilk’s theorem applies.

To do a hypothesis test of which model best matches the data, we do two likelihood 
fits, and calculate (-2 ln of) the ratio of the obtained likelihood values, which behaves 
like a Chi-Square distribution with Ndof = Ndof(alternative) - Ndof(null) = 3.

• If the fits give e.g. -2 ln(LLH_alt / LLH_null) = 2.3.
     Then this corresponds to a (null) p-value = ProbChi2(Chi2=2.3, Ndof=3) = 0.51
     Thus the null hypothesis can not be rejected (no certainty of signal).

• If the fits give e.g. -2 ln(LLH_alt / LLH_null) = 20.9
     Then this corresponds to a (null) p-value = ProbChi2(Chi2=2.3, Ndof=3) = 0.00011
     Thus the null hypothesis can be rejected at 99.989% significance level.
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