Applied Statistics

Principle of maximum likelihood
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“Statistics is merely a quantisation of common sense”



Likelihood function

“I shall stick to the principle of likelihood...”

[Plato, in Timaeus]



Likelihood function

Given a PDF f(x) with parameter(s) 0, what is the chance that with N
observations, x; falls in the intervals [x;, x; + dx;]?

L(0) = H f(z;,0)dx,



Likelihood function

Given a set of measurements x, and parameter(s) 0, the likelihood function is defined
as:
L(Zl,ﬁg, > o g 7$N70) = | | p(xue)
)

The principle of maximum likelihood for parameter estimation consist of
maximising the likelihood of parameter(s) (here ) given some data (here x).
There is nothing strange about this - it is exactly the same we do for the ChiSquare!

The likelihood function plays a central role in statistics, as it can be shown to be:
* Consistent (converges to the right value).

* Asymptotically normal (converges with Gaussian errors).

* Efficient (reaches the Minimum Variance Bound (MVB, Cramer-Rao) for large N).
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To some extend, this means that the likelihood function is “optimal”, that is, if it can
be applied in practice.




Likelihood vs. Chi-Square

For computational reasons, it is often much easier to minimise the logarithm of

the likelihood function:
Oln L
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In problems with Gaussian errors, it turns out that the log likelihood function
boils down to the Chi-Square with a constant offset and a factor -2 in difference.

See Barlow 5.6

The likelihood function for fits comes in two versions:
¢ Binned likelihood (using Poisson) for histograms.
e Unbinned likelihood (using PDF) for single values.

The “trouble” with the likelihood is, that it is unlike the Chi-Square, there is NO
simple way to obtain a probability of obtaining certain likelihood value!



Frequency

ChiSquare

Recall, the ChiSquare is a sum over bins in a histogram:
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Binned Likelihood

The binned likelihood is a sum over bins in a histogram:

Nbins

L(e)binned = H POiSSOH(NiexpeCted7 sz)bserved)
1

A"
Distribution of 25 unit Gaussian numbers f (TL, )\) - n' €
§ 5— - - Entries 25
% - Original PDF Meoar e
Sl Fitted PDF RMS 0.9139
4| — Binned values
— prserved
- _/ 1
S
E Nexpected
B i
N yd | _
M ! ! | 1 L | \ L | \
03 -2 -1 0 1

Gaussian numbers



>
o
C
@
=
O
)]
—
L

(V"
S y
Ve
M
’

2}

,

(&)

||||||||\||I||I|||||II|||

|

W

= Unbinned Likelihood

Sy

The binned likelihood is a sum over single measurements:

Nmeas.
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Notes on the likelihood

For a large sample, the likelihood is indeed

unbiased and has the minimum variance -
that is hard to beat! Also, the binned LLH
approaches the unbinned version.
However...

For the likelihood, you have to know your
PDF. This is also true for the Chi-Square,
but unlike for the Chi-Square, you get no
goodness-of-fit measure to check it!

This can be obtained through simulation!

Also, for small statistics, the likelihood is
not necessarily unbiased, but still fares
much better than the ChiSquare! But be
careful with small statistics. The way to
avoid this problem is also simulation.
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Evaluating the likelihood

As mentioned, it is possible to evaluate a likelihood fit (i.e. get a p-value).
This is done by first fitting the data, and then (given the fit parameters) one
simulates data according to these parameters, and fit these many times.
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Finally, you see what fraction of the fits have a worse LLH. Note the Gaussian shape!
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The likelihood ratio test

Not unlike the Chi-Square, were one can compare x2 values, the likelihood between
two competing hypothesis can be compared (SAME offset constant/ factor!).

While their individual LLH values do not say much, their RATIO says everything!

As with the likelihood, one often takes the logarithm and multiplies by -2 to match
the Chi-Square, thus the “test statistic” becomes:

D=—

91 - likelihood for null model
2In | — ,
likelihood for alternative model

= —2 In(likelihood for null model) + 2 In(likelihood for alternative model)

If the two hypothesis are simple (i.e. no free parameters) then the Neyman-Pearson
Lemma states that this is the best possible test one can make.

If the alternative model is not simple but nested (i.e. contains the null hypothesis),

this difference approximately behaves like a Chi-Square distribution with Ngof =
Naot(alternative) - Ngof(null). This is called Wilk’s Theorem.
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Nested Models?

What does this “nested” thing mean in Wilk’s Theorem, and why is it essential?

In short:
“Nested” means that the Null hypothesis f(x) is “included” in the Alternative
hypothesis g(x), and thus that g(x) can do anything f(x) can... and more!

In terms of function spaces:

Let F and G be the function spaces for all versions of f(x) and g(x), respectively.
Then f(x) is nested in g(x) if F is a subspace of G, i.e. G “contains” F: F C G

Example:

e Null hypothesis: f(x) = Npkg * exp(-x/T)

e Alt. hypothesis: g(x) = Npikg * exp(-x/ 1) + Nsig * Gaussian(u, o)
Here, g(x) can do everything that f(x) can do... and more!

The nested requirement ensures that the LLH value of the Alternative Hypothesis is
always better (i.e. lower for -2LLH) than for the Null Hypothesis, and hence that the
likelihood ratio (which should follow a ChiSquare distribution) is positive!
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Wilk’s Theorem: Example

Consider two models (hypotheses) for data:
Null: Data is only background (exponential).
Alternative: Data is both signal and background (exponential with Gaussian peak).

The models are not simple but nested: The alternative contains the null hypothesis.
Therefore, Wilk’s theorem applies.

To do a hypothesis test of which model best matches the data, we do two likelihood
fits, and calculate (-2 In of) the ratio of the obtained likelihood values, which behaves
like a Chi-Square distribution with Ngof = Naof(alternative) - Ngof(null) = 3.

* If the fits give e.g. -2 In(LLH_alt / LLH_null) = 2.3.
Then this corresponds to a (null) p-value = ProbChi2(Chi2=2.3, Ng4,=3) = 0.51
Thus the null hypothesis can not be rejected (no certainty of signal).

* If the fits give e.g. -2 In(LLH_alt / LLH_null) = 20.9
Then this corresponds to a (null) p-value = ProbChi2(Chi2=2.3, N4.=3) = 0.00011
Thus the null hypothesis can be rejected at 99.989% significance level.
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