Applied Statistics

Systematic Uncertainties

3o 20 lo f lo 20 o

“Statistics is merely a quantisation of common sense”



What is a systematic uncertainty?

Concept and definitions of ‘systematic uncertainties” originates from
physics, not from fundamental statistical methodology.

A common definition is: “Systematic uncertainties are all uncertainties
that are not directly due to the statistics of the data”
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The ideal experiment

Lets consider an ideal / trivial experiment. ,,.

We are measuring the diffusion of a

particle (green).
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The ideal experiment

With statistical uncertainty:

Statistical error
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The non-ideal experiment

Statistical error

—— Error in estimate
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[ have 3 main suspects:

1) A flow from the left might have pushed the particles additionally

2) Another (faster) molecule might have been measured

3) Experimental noise might have influenced results



1) A flow from the left might have pushed the particles additionally

[ could compare the jumps only in x and only in y.

[ find that the distributions are statistically the same - thereby
rejecting this hypothesis
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2) Another (faster) molecule might have been measured

[ simulate the data for 10% of the data, having a higher diffusion
coefficient. Here I find that the best fit is a terrible fit.

For my actual data I get a very good fit - thereby rejecting this
hypothesis
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3) Experimental noise might have influenced results

How can we separate experimental noise from stochastic fluctuations?

Careful investigation yields:

dX = N(0,v2D7) + N (0,0) =N (0, \/ o
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Now I now how to get the basic estimate of the diffusion coefficient -
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Conclusion

Understanding systematic errors require a detailed
understanding of the data

When investigating the effect of a hypothesized source of
systematic error: calculate/simulate the effect!



Sources of Systematic Errors

We can broadly divide the source of systematic errors in 3 categories
1. Instrumental (e.g., miscalibration, measurement errors).

2. Environmental (e.g., temperature fluctuations, electromagnetic
interference).

3. Procedural (e.g., incorrect assumptions, bias).

[f systematic errors are smaller than statistical errors - our way of improving
is to get more data.

[f systematic errors are larger than statistical errors - our way of improving
to enhance our understanding of the experiment
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Example case

Backgrounds
ring the efficiencies of several Geiger counters using a Pb*'® source

The efficiency is given by

observed rate

Example
You are measu

labelled 10 uCi.

r’ —
frue rate

Now, 10 uCi is 370000 disintegrations per second— but unfortunately you do not
know when it was measured, and the half-life of Pb2!° is only 21 years, so the true

rate may really be less than the number on the label.
ition of the source container and from what

he way things work in your lab, that it is most unlikely for the
nd in this worst case the rate 15370000 x 2% =

313710 counts per second. You take the most likely value as being midway between

the two, 341 855, and appeal to the fact that the variance of a uniform distribution

is 1/12 its width to give the error as (370000 — 313 710)./ \/—1’2 — 16250, and tkae C{Jict)tr\
is thus 5%. You are not entirely happy with this, but it 1s the best you canba% uth
the data available, and you comfort yourself with the thought that it is Probaoyy

overestimate.

You decide, by inspecting the condi

you know about t
source to be more than 5 years old,a

yur notice.
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Cross check of data

Classic check of systematic
errors, by dividing the data
according to:

® Period of data taking

* Direction of regulator

* Direction of B-field

If any of these showed an
inconsistency between the
subsamples, one would
know that this had an

impact on the result.

This type of cross checks is

at the heart of data analysis.
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(Another) Example of
systematic error

One of the best “recent” examples is the case of
physicists measuring neutrinos to travel faster
than speed of light.

This would (if true) turn the foundations of
physics in ruins...

After 6 months of intense studies, the researchers
found two possible systematic errors:

e A link from a GPS receiver to the OPERA master
clock was loose, which increased the delay
through the fiber.

e A clock on an electronic board ticked faster than
its expected 10 MHz frequency, lengthening the
reported flight-time of neutrinos, thereby
somewhat reducing the seeming faster-than-
light effect.

RACING LIGHT

By comparing the proton signal at CERN to the resulting neutrino signal at Gran Sasso, the OPERA
experiment was able to calculate the neutrinos’ time of flight as they passed through Earth.

Global Positioning P

3

System synchronizes
clocks at two locations

Start
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Switzerland

Finish
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National

Laboratory
L'Aquila, Italy
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travelled in 2.4 milliseconds (60 nanoseconds faster than light speed)
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Speedy neutrinos
challenge physicists

Experiment under scrutiny as teams prepare to test claim
that particles can beat light speed.

BY EUGENIE SAMUEL REICH

he joke begins with the barman saying:
“I'm sorry, we don’t serve neutrinos.”
Then the punch line: a neutrino walks

into abar.
Such causality-bending humour has been
rife on the Internet in the past week, following
the news that an experiment at the Gran Sasso

worth of physics upended, starting with Albert
Einstein’s special theory of relativity. This sets
the velocity of light as the inviolable and unat-
tainable limit for matter in motion, and links
it to deeper aspects of reality, such as causality.

Physicists, for the most part, suspect that
an unknown systematic error lies behind
OPERAS startling result. But nothing obvious
has emerged, and many see the experiment as

10



Environmental errors



Classical examples

Experiment: The Michelson-Morley movable mirror

]

=
experiment aimed to detect the "aether |

wind" by measuring the speed of light
in ditferent directions.

Systematic Error: Thermal expansion asor

of the apparatus caused small but BT e

measurable shifts in the interference
pattern, complicating data half-transparent

mirror
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isolate the null result that challenged S ——
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the existence of the aether.

fixed
mirror



(Another) Example of
systematic error

Imagine you have a set of measurements (trapped
particles), and you want to measure the size of
the container.

You look at them and think you can just measure
their circumference and use that as an estimator.

Next you realize that the container is not constant
in time! This leads to a serious overestimation of
that container.

In order to resolve this, you need to come up with
new ways on analysing the data with methods
that do not assume constant position of that
container.
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The problem for every scientist

Typically in science we have some kind of theory that we is testing a
hypothesis of.

Clearly some measurements represent something completely different -
for instance the background in an experiment.

Ideally we want to understand everything but as time and ressources
are limited we might treat something as systematic uncertainties.

However - we really don’t want to be the scientists that threw out their
Nobel Prize of interesting data because we treated it as systematic
uncertainties.



Biased measurements

Why does my experiment find a lower value than others?

It is questions like these, that makes you start looking for effects that could yield a
higher value, leading to...

B o / 1100 prrrerrer e N e e :
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Those who forget good and evil and seek only the facts are more likely to achieve good,
than those who view the world through the distorting medium of their own desires. [Bertrand Russell]



The charge of an electron

We have learned a lot from experience about how to handle some of the ways we fool ourselves.

...Millikan measured the charge on an electron by an experiment with falling oil drops, and got an
answer which we now know not to be quite right.

...it’s apparent that people did things like this: When they got a number that was too high above
Millikan's, they thought something must be wrong—and they would look for and find a reason why
something might be wrong. When they got a number close to Millikan's value they didn't look so

hard...
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Blinding of results

To avoid experimenters biases, blinding
has been introduced.

This means that the computer adds a random
number to the result, which is not removed
before the analysis has been thoroughly
checked.

Example:

> ./FitSin2beta
Result is: sin(2beta) = x.xx +- 0.37

Emblem used by the BaBar experiment to label blinded analysis

Do you wish to unblind (y/n)?

This was first introduced by the French Academy of Science (1784), and has since
become standard procedure in most science and medical experiments.

In this way experimenters bias is removed, and the results become truly independent
and unaffected by wishful thinking and “common belief”.



Cleaning data

Example of experimental error, which would be a disaster if not corrected for.

E s spectrum contaminated by cosmics,

beam-halo, machine/detector problems, etc.
=10 £

MET includes cells with E»0 (no CH)

- No cerrection
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g
..
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Run Il
V. Shary CALOR04

10° | after
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Removing data points

One should always be careful about removing data points, yet at the same to be
willing to do so, if very good arguments can be found:

e It is an error measurement.

* Measurement is improbable.

Frequency
distribution
Removing improbable data points
is formalised in Chauvenet’s
Criterion, though many other
methods exists (Pierce, Grubbs,
etc.)

Prob = 1-1/(2N)
Reject data

Reject data

The idea is to assume that the distribution is Gaussian, and ask what the probability
of the farthest point is. If it is below some value (which is preferably to be
determined ahead of applying the criterion), then the point is removed, and the
criterion is reapplied until no more points should be removed.

However, ALWAYS keep a record of your original data, as it may contain more
effects than you originally thought.



Example

Assume we have 10 measurements:

46, 48, 44, 38, 45, 47, 58, 44, 45, 43.

Calculate mean and std:

X = 458 and o, = 5.1.

Now 58 looks suspicious - how bad is it?

| Xy — X 58 — 458

fs = = 51 = 2.4.
o, .
And the probability is:

Prob(outside 2.40) = 1 — Prob(within 2.40)
= 1 — 0.984
= 0.016.

And according to Chauvenets criteria we reject - and recalculate mean and std.




Removing data points and systematic errors

A (in this sense messy and for training) very good data set is the one
containing all the table measurements.

Here we have some clear outliers that should be removed - but also
some systematic errors.
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Example of bad data handling

The result of our panel GLS model predicting the stringency of Covid-19 policies in OECD
countries is shown in Table S3. We carefully test each independent variable by inserting them
hierarchically to avoid collinearity.® The coefficients of Table S3 shows that the epidemiological
baseline indicator (death rate) now strongly predicts the stringency of countries’ policy adoptions
(stringency index), as does population density. A stronger electoral democracy, on the other
hand, weakens the stringency of measures adopted. Looking across the analysis of timing of
adoption and stringency of adoption, we see that population density predicts NPl adoption that is
both rapid and stringent. A higher score on the democracy index, on the other hand, predicts
slower as well as less stringent adoption of NPIs.

Table S3. Predicting the stringency of Covid-19 policies in OECD countries.
Model1 Model2  Model 3

GDP per capita (log) -3.715 4.445 3.457
(7.339) (6.759) (7.239)

Tax revenue (% of GDP) -0.041 -0.162 -0.081
(0.580) (0.541) (0.553)

GINI index (income) -0.776 -0.815 -0.814

(0.672) (0.601) (0.618)
Hospital beds (/1,000 people) 0.527 -0.424 0.091
(1.386) (1.314) (1.310)

Population age 265 (%) -1.741* -0.711 -0.821
(0.773) (0.754) (0.788)
Urban population (%) 0.022 0.046 0.009
(0.274) (0.253) (0.245)
Population density (log) 5.372**  5.905*** 4.719*
(2.055) (1.792) (1.844)
Death rate (/100,000) 11.701** 11.706**
(3.615) (3.610)
Electoral democracy -0.709***  -0.748***
(0.193) (0.200)
Constant 98.528 58.126 75.504
(87.690) (76.766) (83.036)
Observations 1,356 1,356 1,356
Number of countries 36 36 36
Within R-square 0.150 0 0.150
Between R-square 0.276 0.420 0.400
Overall R-square 0.208 0.128 0.240
Model chi-square 41.97 50.34 60.96
Root MSE 21.91 23.75 21.91

Note: Models specified as OLS Panel models with random effects. Stringency of policy adoption and death
rate updated daily, all other variables constant. Measured daily January 15—March 30 2020. Standard errors
in parentheses are clustered at the country level. *** p<0.001, ** p<0.01, * p<0.05, + p<0.10



When systematic errors are actually
new discoveries...

Kepler tested the circular orbit model
against Brahe's data and found
discrepancies of up to 8 arcminutes

Brahe’s methods were reliable
enough to rule out measurement
biases or calibration errors

Eventually, through exhaustive calculations, he
realized the orbit had to be an ellipse rather than
a circle, with the Sun at one focus



When systematic errors are actually
new discoveries...

Mercury's orbit showed a precession that
could not be fully explained by Newtonian
mechanics or known perturbations from
other planets.

The discrepancy was attributed to k
systematic errors in observations or (\ ‘ \| | Mercury at
\ perihelion

incomplete knowledge of celestial
mechanics.

This "error" was later explained by
Einstein's General Theory of Relativity
which showed that spacetime curvature
near the Sun caused the observed
precession.



To work with systematic errors



Example of systematic error

Measurements are taken with a steel ruler, the

ruler was calibrated at 15°C, the

measurements done at 22°C. This is a systematic bias and not only a systematic
uncertainty! To neglect such an effect is a systematic mistake.

Effects can be corrected for! If the temperature

coefficient and lab temperature is

known (exactly), then there is no systematic uncertainty:.

If we correct for effect, but corrections are not known exactly, then we have to
introduce a systematic uncertainty (error propagation!).

A sign of a systematic error (or bug), is that one can see in data, that “something”

strange is going on.

o
o

One should of course work hard to
understand the effect, but occasionally
one must give up, and suffer a large
systematic uncertainty. 30}
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Evaluating systematic errors

Known sources:

e Error on factors in the analysis, energy calibration, efficiencies, corrections, ...
® Error on external input: theory error, error on temperature, masses, ...

Evaluate from varying conditions, and compute result for each. Error is RMSE.

Unsuspected sources:

Repeating the analysis in different form helps to find such systematic effects.
e Use subset of data, or change selection of data used in analysis.
® Change histogram binning, change parameterisations, change fit techniques.

® [ ook for impossibilities.

If you do not a priori expect a systematic effect and if the deviation is not significant,
then do not add this in the systematic error.

If there is a deviation, try to understand, where the mistake is and fix it!

Only as a last resort include non-understood discrepancy as systematic error.

12



Take-home messages

Systematic errors present a serious challenge - Cross checks and
tedious investigations is your best ally

Bias of results is a typical human mistake - blinding of results
solves this issue

Removing data points is a delicate issue - Chauvenets criterion
presents one way to deal with this (but it is not a law of nature!)

34



End of presentation



Example of bad data handling

KOMMENTARER

Nedlukninger har kunreddet fem danskere
fradeden

Effekten af nedlukningerne pa antal dede er yderst beskeden. Uanset, hvor travlt Mette Frederiksen har haft med at redde

danskernes liv.

Forskere kritiserer: Nej, ny
analyse kan ikke konkludere,
at nedlukninger kun har
reddet fem danske liv

»Jeg ville dumpe mine studerende, hvis de havde lavet den,« lyder
det fra en forsker om analysen, som blandt andet CEPOS har staet
bag.



Example of bad data handling

Table 3: Overview of common estimates from studies based on stringency indexes

Estimate Quality

Effect on COVID-19 mortality (Estimated Averted Deaths Standard Weight dimension

/ error (1/SE) <

Total Deaths)

Bjarnskov (2021) -0.3% 0.8% 119 3
Shiva and Molana (2021) -4.1% 0.4% 248 4
Stockenhuber (2020)* 0.0% n/a n/a 3
Chisadza et al. (2021) 0.1% 0.0% 7,390 4
Goldstein et al. (2021) -9.0% 3.8% 26 2
Fuller et al. (2021) -35.3% 9.1% 11 2
Ashraf (2020) -2.4% 0.4% 256 2

Precision-weighted average (arithmetic average /

- % (-7.3%/-2.4%
median) 0.2% (-7.3%/-2.4%)

Figure 5: Funnel plot for estimates from studies based on stringency indexes
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Example of bad data handli

Several studies explicitly claim that they estimate the actual causal relationship between
lockdowns and COVID-19 mortality. Some studies use instrumental variables to justify the
causality associated with their analysis, while others make causality probable using anecdotal
evidence.? But, Sebhatu et al. (2020) show that government policies are strongly driven by the
policies initiated in neighboring countries rather than by the severity of the pandemic in their
own countries. In short, it is not the severity of the pandemic that drives the adoption of
lockdowns, but rather the propensity to copy policies initiated by neighboring countries. The
Sebhatu et al. conclusion throws into doubt the notion of a causal relationship between
lockdowns and COVID-19 mortality.

GINl index (income)-{ —&—
Hospital beds (/1,000 people)| —o——
Population density =
Death rate (/100°) 1 ——
Adoption density (OECD region) o
Electoral democracy ——
| | I I
0 1 2 3 4

Hazard ratio



Example of bad data handli

The result of our panel GLS model predicting the stringency of Covid-19 policies in OECD
countries is shown in Table S3. We carefully test each independent variable by inserting them
hierarchically to avoid collinearity.® The coefficients of Table S3 shows that the epidemiological
baseline indicator (death rate) now strongly predicts the stringency of countries’ policy adoptions
(stringency index), as does population density. A stronger electoral democracy, on the other
hand, weakens the stringency of measures adopted. Looking across the analysis of timing of
adoption and stringency of adoption, we see that population density predicts NPl adoption that is
both rapid and stringent. A higher score on the democracy index, on the other hand, predicts
slower as well as less stringent adoption of NPIs.

Table S3. Predicting the stringency of Covid-19 policies in OECD countries.
Model1 Model2  Model 3

GDP per capita (log) -3.715 4.445 3.457
(7.339) (6.759) (7.239)

Tax revenue (% of GDP) -0.041 -0.162 -0.081
(0.580) (0.541) (0.553)

GINI index (income) -0.776 -0.815 -0.814

(0.672) (0.601) (0.618)
Hospital beds (/1,000 people) 0.527 -0.424 0.091
(1.386) (1.314) (1.310)

Population age 265 (%) -1.741* -0.711 -0.821
(0.773) (0.754) (0.788)
Urban population (%) 0.022 0.046 0.009
(0.274) (0.253) (0.245)
Population density (log) 5.372**  5.905*** 4.719*
(2.055) (1.792) (1.844)
Death rate (/100,000) 11.701** 11.706**
(3.615) (3.610)
Electoral democracy -0.709***  -0.748***
(0.193) (0.200)
Constant 98.528 58.126 75.504
(87.690) (76.766) (83.036)
Observations 1,356 1,356 1,356
Number of countries 36 36 36
Within R-square 0.150 0 0.150
Between R-square 0.276 0.420 0.400
Overall R-square 0.208 0.128 0.240
Model chi-square 41.97 50.34 60.96
Root MSE 21.91 23.75 21.91

Note: Models specified as OLS Panel models with random effects. Stringency of policy adoption and death
rate updated daily, all other variables constant. Measured daily January 15—March 30 2020. Standard errors
in parentheses are clustered at the country level. *** p<0.001, ** p<0.01, * p<0.05, + p<0.10



De-trending algorithms

A typical example is in time series analyses where would like a process to be
stationary. This can be done by applying different kinds of filters.

Of particular importance is the Polynomial filter §— (CV-1C)"1CVly
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