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Comment on “The AI Hype”

Machine Learning is a tool like all others (logic, math, computers, statistics, etc.)

Despite the connotations of machine learning and artificial
intelligence as a mysterious and radical departure from
traditional approaches, we stress that machine learning has a
mathematical formulation that is closely tied to statistics, the
calculus of variations, approximation theory, and optimal

control theory.
[PDG 2024, Review of Machine Learning]

So this is just a sharpening of our tools... albeit a cool sharpening!



Why ML?
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Classification

Null Hypothesis Alternative Hypothesis

Machine Learning typically enables
a better separation between hypothesis
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What is ML?



What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

“Machine learning programs can perform tasks

without being explicitly programmed to do so.”
[Arthur Samuel, US computer pioneer 1901-1990]

“Little Peter is capable of finding his way home
without being explicitly taught to do so.”



What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

"A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as

measured by P, improves with experience E.”
[T. Mitchell, “Machine Learning” 1997]

“Little Peter is said to learn from traveling around with
respect to finding his way home and the time it takes, if his
ability to find his way home, as measured by the time it
takes, improves as he travels around.”
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Humans vs. ML
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: Humans:

Computers: Computers:
Non- Humans: Humans:
linear Computers: Computers:

12



Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: Humans:

Computers: Computers:
Non- Humans: Humans:
linear Computers: Computers:

13



Dimensionality and Complexity

Humans & Computers are good at seeing /understanding linear data in few
dimensions:

e Awake in Class
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: v/ Humans:

Computers: v |Computers:
Non- Humans: Humans:
linear Computers: Computers:




Dimensionality and Complexity

However, when the dimensionality goes beyond 3D, we are lost, even for simple
linear data. Computers are not...

Iris Data (red=setosa,green=versicolor,blue=virginica)
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: v Humans: +

Computers: v |Computers: v
Non- Humans: Humans:
linear Computers: Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: v/ Humans: =

Computers: v |Computers: v
Non- Humans: v~ Humans:
linear Computers: (V) Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.
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Naturally, I can’t show you high dimensional data!

This illustration is just a silly attempt at complexity.
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: v Humans: +
Computers: v |Computers: v

Non- Humans: v Humans: =
linear Computers: (v') |Computers: (V)

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! )



Types of ML



Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

We will be mostly on this side!
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Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

And only briefly mention this side! We will be mostly on this side!
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Reinforcement Learning
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Two main ingredients:

1. Solutions exists
2. How to find them



Solutions exists

(Technically called Universal Approximation Theorems)

27



Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve
that separates these.
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Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve

that separates these.

This could be an example:
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Generally, we want to find a function that does this well!
But how to write such a function? In N-dim space?!?
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Universal Approx.

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
Answer: Yes — Red
Answer: No — Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.

Theorems

Parameter B

Decision tree

sig
bkg

0 1 2 3
Parameter A
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Universal Approx. Theorems
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Universal Approx. Theorems

A simple function can be
obtained simply by asking
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Answer: No — Blue
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Universal Approx. Theorems

Decision tree

A simple function can be =
obtained simply by asking bkg
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Question: Is B > 0.23?
Answer: Yes — Red L
Answer: No — Blue N :
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Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) *° Let o be a non-
constant, bounded, and monotone-increasing continuous function. Let I,
denote the my-dimensional unit hypercube [0,1]™0. The space of contin-
uous functions on Ip, is denoted as C(ly,). Then given any function
f € C(I,) and € > 0 there exists a set of real constants a;, b; and Wij,
wherei=1,... myand j=1,...,mqp such that we may define

nq my
F(X1,. . Xmy) = Y ai0 (Z w;iX;j + bi) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,

|F(x1, .- Xmy) — (X1, -0, Xmy)| < € (5.7)

for all x1,x2,...,%Xm, that lie in the input space.
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Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) *° Let o be a non-

Summary:

Neural Networks etc. can approximate
functions in any dimension very well!

F(xy,..., Xmy) = Y 4i0 kz w;iX;j + bl-) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,
|F(xq,..., Xmg) — f(x1,. .., Xmy)| < € (5.7)
forall x1,x3,..., Xm, that lie in the input space.
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Universal Approx. Theorems

Such approximations typically entails a large amount of parameters, for which

the UATs give no recipe on how to find - only that such a construction is possible.

i—
=

/@_I .
X
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How to find these

(Technically called Stochastic Gradient Descent)

39



Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

N
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‘ ":Q‘\k\\\\&\“

7
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Goodfellow, lan; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200-220. ISBN 9780262035613. 40



https://en.wikipedia.org/wiki/Ian_Goodfellow
https://en.wikipedia.org/wiki/Yoshua_Bengio
https://www.deeplearningbook.org/contents/mlp.html#pf25
https://www.deeplearningbook.org/contents/mlp.html#pf25
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780262035613

(Normal) Gradient Descent

The choice of loss function, L, depends on the problem at hand, and in particular
what you find important! You want to minimise this with respect to the model

parameters O: 1 N
L(0) = N ZLz’(@)

In order to find the optimal solution, one can use Gradient Descent, typically
based on the whole dataset:

N
0.1 =0; — VL) =0, — % N VLi(6)

This is the procedure used by e.g. Minuit and other minimisation routines.

Note the very important parameter: Learning rate n. 4



(Nasty) Loss Landscapes

Loss landscapes may (even in 2D) be very

complicated, with many local minima.

,,,,

arXiv: 1712.09913
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Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

The gradient descent is made stochastic
(and fast) by only considering a fraction
(called a “batch”) of the data, when
calculating the step in the search for
optimal parameters for the algorithm.
This allow for stochastic jumping, that
avoids local (false) minima.

‘_\

A

Ordinary
Gradient Descent

>1
7

Stochastic
Gradient Descent

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200-220. ISBN 9780262035613.
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http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780262035613

Stochastic Gradient Descent

In order to give the gradient descent some degree of “randomness” (stochastic),
one evaluates the below function for small batches instead of the full dataset.

0,01 = 0; —NVL(B) = 0; — -3 VL;(6)

The algorithm thus becomes: 4

e Choose an initial vector of parameters w and learning rate 7).
e Repeat until an approximate minimum is obtained:

e Randomly shuffle examples in the training set.
e Fort =1,2,...,n,do:

ew:=w—nVQ;(w).

Z

ol o
Iterations

! ! ! ! ! |
500 1000 1500 2000 2500 3000 3500

-10
0

Not only does this vectorise well and gives smoother descents, but with
decreasing learning rate, it “almost surely” finds the global minimum
(Robbins-Siegmund theorem).
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Learning Rate Schedulers

But, there is no reason to consider a fixed value for the learning rate!

More practically, one would typically adapt the learning rate to the situation:
e When exploring: Use larger learning rate.

e When exploiting: Use lower learning rate (when converging).

Below is illustrated what happens, when the learning rate is right/wrong.

1(0)

Too low

1(6)

Just right

//

1(0)

Too high

From: https://www.jeremyjordan.me/nn-learning-rate/

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning
rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors
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Ingredients for ML

So now we know that at least in principle:
e a solution exists (Universal Approximation Theorem) and
e that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:

e actual functions/algorithms for making approximations
Boosted Decision Trees (BDTs) & Neural Networks (NNs)

e knowledge about how to tell them what to learn
Loss functions (and how to minimise these)

e a scheme for how to use the data we have available
Training, validation, and testing samples & Cross Validation

46



The linear analysis case

47



Simple Example

Problem: You want to figure out a method for getting sample that is mostly male!
Solution: Gather height data from 10000 people, Estimate cut with 95% purity!

A

Male

Female

Cut

Height

48



Simple Example

Additional data: The data you find also contains shoe size!
How to use this? Well, it is more information, but should you cut on it?

Male 1 Male
Female Female
\ Cut Cut?
N R N N
Height Shoe size

The question is, what is the best way to use this (possibly correlated) information!

49



Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
A A A
Q () ()
N N N
() () ()
o o o
e i -
w wn wn
Male Male Male
Female Female Female
Cut!? Cut? Cut?
Height Height Height

The latter approach is the Fisher discriminant!

It has the advantage of being simple and applicable in many dimensions easily!
50



Shoe size

Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
A This is what we 4 | Thisis actually 4 | This is the most
. u ()
have been doing| M how tree based i elegant way,
for many years! q) methods works! q) when possible!
2 2
n n
Male Male Male
Female Female Female
Cut! Cut? Cut?
. 4) . : . )
Height Height Height

The latter approach is the Fisher discriminant!

It has the advantage of being simple and applicable in many dimensions easily!
51



Non-linear cases

While the Fisher Discriminant uses all separations and linear correlations,

it does not perform optimally, when there are non-linear correlations present:

A
Background
Signal

AN

Use Fisher

>
X

A

Don'’t Fish
Background ont oee TENe

Signal

>
X]

If the PDFs of signal and background are known, then one can use a likelihood.
But this is very rarely the case, and hence one should move on to the Fisher.

However, if correlations are non-linear, more “tough” methods are needed...
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Tree based models



Decision tree learning

“Tree learning comes closest to meeting
the requirements for serving as an
off-the-shelf procedure for data mining”,

because it:
e isinvariant under scaling and various other transformations of feature values,
* is robust to discontinuous, categorical, and irrelevant features,
e produces inspectable models.

HOWEVER... they are seldom accurate (i.e. most performant)!

[Trevor Hastie, Prof. of Mathematics & Statistics, Stanford]

Again, for tabular data, I tend to disagree with the last statement!
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Decision Trees

A decision tree divides the parameter
space, starting with the maximal
separation. In the end each part has a
probability of being signal or
background.

® Works in 95+% of all problems!

® Fully uses non-linear correlations.

But BDTs require a lot of data for
training, and is sensitive to
overtraining.

Overtraining can be reduced by
limiting the number of nodes and

number of trees.

Decision trees are from before 1980!!!

oA

Background
Signal
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Boosting... using many trees!

. o~ A
There is no reason, why you can not % Bacl 4
have more trees. Each tree is a simple .ac groun
classifier, but many can be combined! S lgnal

To avoid N identical trees, one assigns
a higher weight to events that are hard
to classity, i.e. boosting:

Boost weight
1 —err

First classifier a =

err
/ 1 Ncollection \

YBoost (X) = . In(oy) - hij(x
oost (X) Neollection ; (}Vz( )
Parameters in event N Individual tree *éo

Boosting is from 1997 (AdaBoost).



Boosting... using many trees!

; oA
There is no reason, why you can not X

have more trees_Each tree is a simnle BaCkg roun d

classifier, but m

pwainael  JRETULN. ..

a higher weight

to classity, i.e. b{

increasing the weight /

First classifier

/ of misclassified entries_ x|

YBoost (X) =
% N, collection 1_24 / /
Parameters in event N Individual tree \;O >
X2>b &

Boosting is from 1997 (AdaBoost).
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Boosting illustrated

Boosting provides a reweighing scheme giving harder cases higher weights.
At the end of training, the trees are collected into an “ensemble classifier”.

.’9,.} @
o200 ® @ O o
(1 QO
Original Data Weighted data Weighted data

Ensemble
Classifer

0000

X 0000
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Where to split?

How does the algorithm decide which variable to split on and where to split?
There are several ways in which this can be done, and there is a difference
between how to do it for classification and regression. But in general, one would

like to make the split, which maximises the improvement gained by doing so.

In classification, one often uses the average binary cross entropy (aka. “log-loss”):

N
1 . ’
e —N Z [yn log 9, + (1 _ y”) log(l - yn)]

n=1
Here, Yn, is the truth, while @n is the estimate (in [0,1]).

Other alternatives include using Gini coefficients, Variance reduction, and even
ChiSquare. However, in classification the above is somewhat “standard”.
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Housing Prices decision tree

Decision tree for estimating the price in the housing prices data set:

/

samples = 6986
value = 1963348.0471

AN

samples = 4941
value = 1530318.8873

J/

/

SCHOOL_DISTANCE_1 < 1695.405

mse = 9.79228685447e+11
samples = 3444
value = 1259853.806

CONSTRUCTION_YEAR < 1985.5

mse = 5.10892846075e+11
samples = 978
value = 9536961452

o

("SIZE_OF_HOUSE <235.5
mse = 4.99606026506e+12
samples = 1497

L value = 2152551.1784 )

(" POSTAL_CODE < 3680.0
mse = 3.68022716583e+12
samples = 1345

(" POSTAL_CODE <3110.0
mse = 1.16202252824e+13

 \

("SIZE_OF HOUSE < 144.5
mse = 2.36452076724e+12

L value = 2019988.1539 )

SIZE_OF_HOUSE < 462.0
mse = 1.3836907023e+13
samples = 7014
value = 2028954.3037

SPERRKET DSTICE
“Sarmareea.ia

vake o4

\

False

(" POSTAL_CODE < 7980.0
mse = 1.51080057315e+13
samples = 152

L value = 3325559.5197 )

CONSTRUCTION_YEAR < 1812.0
mse = 2.97888770906e+14
samples = 28
value = 18397715.3214

mse = 0.0

samples = 1
value = 74000000.0

v i

SUPERMARKET_DISTANCE_1 < 1224.845
mse = 4.37090668214e+11

samples =

value = 856331.2918

802

SIZE?OF?HOUSE <975
mse = 6.07151144402e+11
samples = 176
value = 1397370.0795

POSTAL_CODE < 3395.0
mse = 2.25780802539e+12
samples = 116
value = 3138769.319

CONSTRUCTION_YEAR < 1993.5
mse = 3.68519260761e+12
samples = 1229
value = 1914391.2335

(" POSTAL_CODE < 42305
mse = 4.84879610682¢e+12
samples = 100

\__ Vvalue =2580827.09 )

SUPERMARKET_DISTANCE_1 <2
mse = 3.17195326885e+1
samples = 52
value = 4757737.2692

/

/

/

\

/ 1\

/__\




Housing Type decision tree

Decision tree for determining, if a house will be sold for more or less than 2Mkr.

L BODE < 2350.0

 \ class =0 )

('SIZE_OF_HOUSE <755 )
gini = 0.4875
samples = 2477
value = [1434, 1043]

(POSTAL_CODE < 2975.0 )
gini = 0.3416
samples = 1638

True

value = [1280, 358]

L class =0

o

('SIZE_OF_HOUSE <88.5)
gini = 0.256
samples = 1221
value = [1037, 184]

L class =0 )

/

(POSTAL_CODE < 2550.0 )
gini = 0.193
samples = 989
value = [882, 107]

class =0

J

SIZE_OF_HOUSE < 116.5
gini = 0.4863
samples = 417
value = [243, 174]
class =0

POSTAL_CODE < 3395.0
gini = 0.4359
samples = 162
value = [52, 110]
class =1

VAN

T

POSTAL_CODE < 3395.0
gini = 0.376
samples = 255
value = [191, 64]
class =0

POSTAL_CODE < 3615.0
gini = 0.4521
samples = 7014
value = [2422, 4592]
class =1

POSTAL_CODE < 2695.0
gini = 0.2484
samples = 688

gini

POSTAL_CODE < 3085.0

samples = 110

=0.32

SIZE_OF_HOUSE < 98.5
gini =
samples = 52

0.4882

POSTAL_CODE < 3175.0
gini = 0.4717
samples = 126

CONSTRUCTION_YEAR < 1970.5

gini = 0.2173
samples = 129



XGboost - a neat little story!
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The HiggsML Kaggle Challenge

CERN analyses its data using a
vast array of ML methods. CERN
is thus part of the community
that developpes ML!

After 20 years of using Machine
Learning it has now become very
widespread (NN, BDT, Random
Forest, etc.)

A prime example was the Kaggle
“HiggsML Challenge”. Most
popular challenge of its time!
(1785 teams, 6517 downloads,
35772 solutions, 136 forums)

Higgs

challenge

I the HiggsML challenge

May to September 2014

When High Energy Physics meets Machine Learning




XGBoost history

History [edit]

XGBoost initially started as a research project by Tiangi Chenl8! as part of the Distributed (Deep) Machine
Learning_; Community (DMLC) group. Initially, it beg_;an as a terminal application which could be configured
using a libsvm configuration file. After winning the Higgs Machine Learning Challenge, it became well known
in the ML competition circles. Soon after, the Python and R packages were built and now it has packages for
many other languages like Julia, Scala, Java, etc. This brought the library to more developers and became
popular among the Kaggle community where it has been used for a large number of competitions.!”]

While Tlanqi Chen dld not Wln nggs Higgs Boson Machine Learning Challenge
himself, he provided a method = craferoe vl
used by abOUt half Of the teamsl Overview Data Discussion Leaderboard Rules

the second place among them!

Description First Place:

For this, he got a Special award Evaluation « Gabor Melis - Diosd, Hungary, with this code and model documentation

Prizes Second Place:

and XGBOOSt became instantly About The Sponsors « Tim Salimans - Utrecht, The Netherlands, with this code and model documentation
. o imeline Third Place:
known in the community:. =

Winners « Pierre C. - Kremlin-bicétre, France, with this code and model documentation
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XGBoost algorithm

The algorithms is documented on the arXiv: 1603.02754

XGBoost: A Scalable Tree Boosting System

Tiangi Chen
University of Washington
tqchen@cs.washington.edu

ABSTRACT

Tree boosting is a highly effective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords

Large-scale Machine Learning

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].

In this paper, we describe XGBoost, a scalable machine
learning system for tree boosting. The system is available as
an open source package?. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions  published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,

Annm vmassmal vada wvvan srmad v 11 AAlE A MhA Avvannns
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XGBoost algorithm

The algorithms is an extension of the decision tree idea (tree boosting), using
regression trees with weighted quantiles and being “sparcity aware” (i.e.
knowing about lacking entries and low statistics areas of phase space).

Unlike decision trees, each regression tree contains a continuous score on each

leaf:
tree1 tree2

b
e & B8
+2

+0.1 1 % +0.9

o2 (£

-0.9

f( @ )=2+09=29 f & »=1-09=-19
Figure 1: Tree Ensemble Model. The final predic-

tion for a given example is the sum of predictions

from each tree.
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XGBoost

As it turns out, XGBoost is not only very performant but also very fast...

The most important factor behind the success of XGBoost
is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.

But this will of course only last for so long - new algorithms see the light of day
every week... day?

shortly after

Meanwhile, LightGBM has seen the light of day, and it is even faster...
Which algorithm takes the crown: Light GBM vs XGBOOST?

Very good blog with introduction to tree based learning
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https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/
https://www.analyticsvidhya.com/blog/2016/04/tree-based-algorithms-complete-tutorial-scratch-in-python/

Neural Network models



Neural Networks (NN)

NEURONS

INPUT LAYER1 LAYER 2 QUTPUT

In machine learning and related fields, artificial neural networks (ANNSs) are
computational models inspired by an animal’s central nervous systems (in particular
the brain) which is capable of machine learning as well as pattern recognition.

Neural networks have been used to solve a wide variety of tasks that are hard to
solve using ordinary rule-based programming, including computer vision and
speech recognition.

[Wikipedia, Introduction to Artificial Neural Network] i



A “Linear Network”

Imagine that we consider a “Linear Network”, and use the (simplest) architecture:
A single layer (linear) perceptron:

t(z) =ao+ » az;

As can be see, this is simply a linear regression in multiple dimensions or the
(linear) Fisher Discriminant.

Iuput Hidden Output
Well, then we could consider putting in layer layer loyer
a hidden (linear) layer:

tt(x) = t(ao + » a;w;)

Input #1
Input #2
Output

Input #3

Input #4

However, this doesn’t help anything
as combination of linear functions remain linear. It boils down to the Fisher again!

What we need is something non-linear in the function...
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Logistic Regression

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

1.00
0.75-

0.50-

Test Passed?

0.25-

0.00-

Hours Studied
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y (time to boundary)

Logistic Regression

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

The model expands 1
s(@)

naturally with more = 1 4+ e (@—w0)/0x—(y—yo)/0oy
parameters:

Logistic Regression Model with decision threshold
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Neural Networks

Neural Networks combine the input
variables using a “activation” function
s(x) to assign, if the variable indicates
signal or background.

The simplest is a single layer perceptron:

t(x)=s (ao + Z aiiﬁi)

This can be generalised to a multilayer

perceptron (shown right, 1 hidden layer):

t(x)=s (ai + Z aihi(:z:))
hi(x) =s (wio 4 sz‘jﬂ?j)

Activation function can be any
“sigmoidal” function.

1.1

1
09
S\T
0.8
0.7 4
0.6 4
0S54
0.4 4
034
0.2 4
0.1 e
»——'—’_'__—4 "
0 == -
01 T -
-10 9 7 -6

Input
layer

Input #1

Input #2

Input #3

Input #4

Hidden

layer

Output
layer

Output
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Neural Networks

Neural Networks combine the input
variables using a “activation” function
s(x) to assign, if the variable indicates
signal or background.

The simplest is a single layer perceptron:

t(x)=s (ao + Z az‘l’z‘)

1.1
14
o s(x) = ! e )
0.8- _ _ o~
1+e a(x—x0)
0.7 4
s 1y
0.5 j
0.4 A, { a=2
0.3+ -"/,./,'J. f a=1
0.2 o ','/ 'J'" a=1/2
014 e P,
e V4 =13
) = -
|;| l T T T T T T T T T
<10 9 8 7 -6 2 -1 0 S 6 7 8 9 0
Input Hidden Output
I
layer layer layer
Input #1
Input #2
Output

Input #3

Input #4



Activation Functions

There are many different activation functions, some of which are shown below.
They have different properties, and can be considered a HyperParameter.

Activation Functions

S|gmo|d l Leaky RelLU

_ 1 max(0.1z, )
0'(33')  14e—®
tanh Maxout
tanh(z) max(wi x + by, wl x + by)
ReLU ELU
max (0, x) {x z20

ae®*—1) z<0 - - i0

For a more complete list, check: https:/ /en.wikipedia.org/wiki/Activation_function
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https://en.wikipedia.org/wiki/Activation_function

Normalising Inputs

While tree based learning is invariant to (transformations of) distributions,
Neural Networks are not. To avoid hard optimisation, vanishing/exploding
gradients, and differential learning rates, one should normalise the input:

20 A ;
I .Qb
| s ~:
I o

15 - : .‘..o ’
| PO oL L P
: .‘... - ‘ %e ..

10 | N T
' .. .. ... [ {] :‘

3 : 0® ®e * o
B . T A0
: oo
|
) O NS——— T T A T S NSO D" [— —

: o Dataset
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Deep Neural Networks

Deep Neural Networks (DNN) are simply (much) extended NNs in terms of layers!

Input layer . Hidden layer

X; » vy ———————P» z €—o, Target

Currently, DNNs can have up to
millions of neurons and
connections, which compares to
about the brain of a worm.

Instead of having just one (or few)
hidden layers, many such layers are
introduced.

This gives the network a chance to
produce key features and use them
for many different specialised tasks.

input layer

-:-\ \ 1
i

hidden layer 1 hidden layer 2 hidden layer 3

_;? output laver

\‘_N S
BSE




The role of NNs

The reason why NN play such a central role is that they are versatile:

e Recurrent NNs (for time series)

e Convolutional NNs (for images) S N euralNetWork S
e Adversarial NNs (for simulation) e Se SBe S8, §§%
e Graph NNs (for geometric data)

® ctc.

Unlike trees, NNs typically make the “foundation”
of all the more advanced ML paradigms. However,
they are harder to optimise!

This is why trees a great for simpler tasks (i.e. data
that typically fits into an excel sheet [2110.01889]),
while NN are typically used for the more advanced. | 8582 <§§> <§3 @

Have this in mind, when you attack problems with
ML - and like any other project or analysis, it is
typically good to get a “rough result” fast, and then

to refine it from there.



Preprocessing Data
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When data is imperfect

So far, we have looked at “perfect” data, i.e. data without any flaws in it.
However, real world datasets are hardly ever “perfect”, but contains flaws that
makes preprocessing imperative.

Effects may be (non-exhaustive list):

e NaN-values and "Non-values" (i.e. -9999)

Wild outliers (i.e. values far outside the typical range)

Shifts in distributions (i.e. part of data having a different mean/width/etc.)
Mixture of types (i.e. numerical and text, from something humans filled out)

It is also important to consider, if entries are missing...
1. Randomly (in which case there should be no bias from omitting) or
2. Following some pattern (in which case there could be problems!).

In case of NaN values, we might simply decide to drop the variable column or
entry row, requiring that all variables/entries have reasonable values.

Alternatively, we might insert “imputed” values instead, saving statistics.
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NaN-values tend to correlate

It is often seen, that several variables have the same source, and thus their NaN
occurrence might be correlated with each other.

This can be tested by substituting 0’s for numerical values and 1’s for NaN
values. By considering the correlation matrix of these substitute 0/1 values, one

A= U U \ o N

—
IN\N\
x

gets a pretty clear picture. el IS R R R

X X X X X X X X X X X X X X X X X X X X

x 14
X

Typically, some entries are 100%
correlated, as the source of these
variables is shared.

Based on this information, one can
better decide how to deal with these
variables.




Conclusions

No matter what you plan to do with data, my first advice is always:

Print & Plot

This is your first assurance, that you even remotely know what the data
contains, and your first guard against nasty surprises.

Also, working with others (from know-nothings to domain experts) you will be
required to show the input, and assuring that it is valid and makes sense.

Remember to do so in all your ML work...
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Dividing Data
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How to “use” your data?

If you train you algorithm on all data, you will not recognise overtrain, nor what
the expected performance on new data will be. Thus we divide the data into:

Train Dataset
* Set of data used for learning (by the model), that is, to fit the parameters to
the machine learning model using stochastic gradient descent.
Valid Dataset
* Set of data used to provide an unbiased evaluation of intermediate models
fitted on the training dataset while tuning model parameters and
hyperparameters, and also for selecting input features.
Test Dataset
* Set of data used to provide an unbiased evaluation of a final model fitted
on the training dataset.

Train Valid Test
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How to do the division?

You can of course do this yourself with your own code, but there are specially
prepared functions for the task:

Scikit-Learn method:

from sklearn.model_selection import train_test_split

X_train, X_rem, y_train, y_rem = train_test_split(X, y, train_size=0.8)

X_valid, X_test, y_valid, y_test = train_test_split(X_rem, y_rem, test_size=0.5)

Fast ML method:

from fast_ml.model_development import train_valid_test_split

X_train, y_train, X_valid, y_valid, X_test, y_test =

train_valid_test_split(df, target = *?, train_size=0.8, valid_size=0.1, test_size=0.1)

There are a few important things to remember:

e Always do the data cleaning, selecting, weighting, etc. before splitting!
e If there is “more than enough” data, then use less than the total.

o If there is “a little too little” data, then use cross validation (next).
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k-fold Cross Validation

In case your data set is not that large (and perhaps anyhow), one can train on
most of it, and then test on the remaining 1/k fraction.

This is then repeated for each fold... CPU-intensive, but easily parallelisable and
smart especially for small data samples.

)
)
)

Dataset
Fold1 Fold2 Fold3 Fold4 Foldd = Fold k

Split the dataset into k randomly sampled independent subsets (folds).
Train classifier with k-1 folds and test with remaining fold.
Repeat k times.
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Getting an uncertainty estimate

The k-fold cross validation (CV) does not only allow you to train on almost all

(1-(1/k)) and test on all the data, but also has a two additional advantages:

e If you consider the performance (“Error” below) on each fold, then you can
also calculate the uncertainty on the performance.

e Since you can test on all data, the uncertainty on the loss estimate goes down.

Training Sets Test Set
| I
Iteration 1 L » ETror;
Iteration 2 —» Error,
5
. 1
Iteration 3 —» Errors | Error = gz Error;
i=1
Iteration 4 _» Error,
Iteration 5 L » Errors
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Train, Validation & Test
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

03

i
\

Some overtraining |

score

Performance of the classifier

0.1

o1l

041 undertraining

optimal

some over training

WMWW\’WW

clear over training

— Training error
— CV error

100
max_leaf nodes

150

Complexity of the classifier
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

— Training error
— CV error
041 undertraining
. Why does the red
some over training curve reach zero?

optimal
0.2

score

Performance of the classifier

\

01 -

\\\ clear over training
n . N \\\\X
Some overtraining is good!
| From: Ian Goodfellow et al: “Deep Learning”
-0.1
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https://www.deeplearningbook.org/contents/ml.html

Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

041 undertraining

03

optimal
02

score

Performance of the classifier

0.1

Some overtraining is good!

some over training

W_MWW\/‘-«AMM

— Training error
— CV error

So how can we know, when to stop

-| increasing the complexity of our

algorithm?
(e.g. including more trees for BDTs)

|
100 150
max leatnodes Complexity of the classifier
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Which method to use?

There is no good /simple answer to this, though people have tried, e.g.:

scikit-learn
algorithm cheat-sheet

classification N—
NOT

SVC ; WORKING
Ensemble =
Classifiers T

WORKING

SGD
Classifier

SVR(kernel="rbf")
EnsembleRegressors

NO,

NOT
WORKING

Spectral
Clustering =~
GMM
YES
YES

lusterin
clust g ﬁoK\
samples

few features
should be
important

predlcdng' a RidgeRegression
quantity SVR
(kernel="linear")
NO

NOT
WORKING

samples

predicting a
ves | category
do you have
labeled NO
~ YES

samples

ok
[¢}

N

NOT
WORKING

dimensionality
SRR reduction

<10K

samples

Note: Old Scikit-Learn overview! 93



Which method to use?

There is no good /simple answer to this, though people have tried, e.g.:

scikit-learn
algorithm cheat-sheet

classification N—

approximation o
SVC ; WORKING
Ensemble '
Classifiers SGD
Classifier

WORKING

SVR(kernel="rbf")
EnsembleRegressors

YES

do you have

labeled
data

few features
should be
important

NOT
WORKING

Spectral
Clustering =~
GMM

clustering

NOT
WORKING

RidgeRegression
SVR
(kernel="linear")

NOT
WORKING

kernel
T approximation

dimensionality
reduction
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Bonus Slides



The ML output
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40000 A

Frequency / 0.01

10000 A

Typical ML Distribution

An ML score distribution from binary classification typically looks as follows:

30000 A

20000 A

1 Signal
Background

Challenges:
e Hard to inspect visually
e Numerically challenging

0.2

d4 Ok
p, ML classification score

0.8

1.0
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:

4000 - 1 Signal
Background
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:

4000 - 1 Signal

Background
3500 A

3000 -
Numerically better:

2500 A

/
PLogic = 1N (1 ﬁp/> , Where p, — (1 _26) kPt €

N
o
o
o
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=
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o
o
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S

—160 —%5 —50 —iS Ob 25 50 fS 160
Logit(p), Logit of ML classification score
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When to apply ML?



(better efficiency, sharper peaks...

When to use ML?

Using ML in an analysis is usually a (favorable) trade-off between:
e Higher statistics — Lower statistical error

unless the cases are simple!)

e Larger data-MC differences — Higher systematic errors

(more inputs, non-linearities...

unless there are good control channels!)

So consider the table of uncertainties from a previous analysis (or estimate
these with a colleague), and ask yourself which of the two are dominant?

Jet multiplicity

Measured cross section

+ (stat.) & (syst.) & (lumi.) [pb]

Z =

> 0 jets
> 1 jets
> 2 jets
> 3 jets
> 4 jets
> 5 jets
> 6 jets
> 7 jets

740 £ 1+ 23+ 16
116.0 £ 0.3+ 9.7+ 2.5
27.0+ 0.1+ 2.8+ 0.6
6.20+] 0.044+ 0.82+ 0.14
1.484+ 0.024+ 0.234+ 0.04
036+ 001+ 007+ 0.01
0.079+ 0.004+ 0.018 4+ 0.002
0.0178 4 0.0019 £ 0.0049 £ 0.0005

With this in mind, consider if it is worthwhile to apply Machine Learning.

Search for Higgs boson decays to a Z boson and a photon
in proton-proton collisions at \/E =13 TeV

CMS Collaboration

A search is performed for a standard model (SM) Higgs boson decaying into a lepton pair (e~
or u*p~) and a photon with my+,- > 50 GeV. The analysis is performed using a sample of

proton-proton (pp) collision data at /s = 13 TeV, corresponding to an integrated luminosity of 138

fb~L. The main contrlbutlon to thls fnal state is from Higgs boson decays toa Z boson and a
alue of the signal strength i for my = 125.38 GeV is

is measurement corresponds to

higher than the SM prediction. The observed (expected) local S|gn|f|cance is 2.7 (1.2) standard
deviations, where the expected significance is determined for the SM hypothesis. The observed
(expected) upper limit at 95% confidence level on p is 4.1 (1.8). In addition, a combined fit with the
H — 7 analysis of the same data set [18] is performed to measure the ratio

B(H — Zv)/B(H — vy) = 1.570:7, which is consistent with the ratio of 0.69 + 0.04 predicted
by the SM at the 1.5 standard deviation level.
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Summary & Conclusions

Humans are great for problems of low dimensionality. Linear methods are
great for linear problems.

However, real world problems are often high dimensional and non-linear, i.e.
“complicated”. Here, Machine Learning (ML) can provide a solution, if good
(i.e. many) known cases are available for training.

Large amounts of data with NO known cases can be considered through
“unsupervised” learning, but this is hard and typically less powerful.

ML typically requires high statistics and is not very transparent, and thus
does not apply to simpler and / or low statistics cases.

In the end, simple solutions are often great. But if the case is not one such, ML

is a great way of “easily extracting” the information and boiling it down to a
single / few variable, which summarises the information available.
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Links

Links to many ML resources:
https:/ /www.nbi.dk /~petersen / Teaching / M1.2025 / MLlinks.html

Links to great online NN toy:
https:/ / playground.tensorflow.org /

Link to super online CNN toy:
https:/ /adamharley.com /nn_vis/cnn/2d.html



https://www.nbi.dk/~petersen/Teaching/ML2025/MLlinks.html
https://playground.tensorflow.org/
https://adamharley.com/nn_vis/cnn/2d.html

