
Applied Statistics
Introduction to Machine Learning

“Statistics is merely a quantisation of common sense. Machine Learning is a sharpening of it!”

Troels C. Petersen (NBI)

1

Applied Statistics
Introduction to Machine Learning

“Statistics is merely a quantisation of common sense. Machine Learning is a sharpening of it!”

Troels C. Petersen (NBI)

2

3

On a dark and stormy afternoon in Paris,
while working on my Ph.D. (October 2002!):

SignalBackground

Comment on “The AI Hype”

4

Machine Learning is a tool like all others (logic, math, computers, statistics, etc.)

Despite the connotations of machine learning and artificial
intelligence as a mysterious and radical departure from
traditional approaches, we stress that machine learning has a
mathematical formulation that is closely tied to statistics, the
calculus of variations, approximation theory, and optimal
control theory.

[PDG 2024, Review of Machine Learning]

So this is just a sharpening of our tools… albeit a cool sharpening!

Why ML?

5

Classification

Null Hypothesis Alternative Hypothesis

6

Classification

Null Hypothesis Alternative Hypothesis

7

Machine Learning typically enables
a better separation between hypothesis

What is ML?

8

Why errors?!?What is Machine Learning?
While there is no formal definition, an early attempt is the following intuition:

“Machine learning programs can perform tasks
without being explicitly programmed to do so.”

[Arthur Samuel, US computer pioneer 1901-1990]

“Little Peter is capable of finding his way home
without being explicitly taught to do so.”

9

Why errors?!?What is Machine Learning?
While there is no formal definition, an early attempt is the following intuition:

"A computer program is said to learn from
experience E with respect to some class of tasks T and

performance measure P if its performance at tasks in T, as
measured by P, improves with experience E.”

[T. Mitchell, “Machine Learning” 1997]

“Little Peter is said to learn from traveling around with
respect to finding his way home and the time it takes, if his

ability to find his way home, as measured by the time it
takes, improves as he travels around.”

10

Humans vs. ML

11

Dimensionality and Complexity

12

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans:
Computers:

Humans:
Computers:

Non-
linear

Humans:
Computers:

Humans:
Computers:

Dimensionality and Complexity

13

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans:
Computers:

Humans:
Computers:

Non-
linear

Humans:
Computers:

Humans:
Computers:

14

Dimensionality and Complexity
Humans & Computers are good at seeing/understanding linear data in few
dimensions:

• Awake in Class
• Sleeping in Class

C
ou

rs
e

Sc
or

e
(a

rb
itr

ar
y

sc
al

e)

Absence from Class (arbitrary scale)

Dimensionality and Complexity

15

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: ✓
Computers: ✓

Humans:
Computers:

Non-
linear

Humans:
Computers:

Humans:
Computers:

16

Dimensionality and Complexity
However, when the dimensionality goes beyond 3D, we are lost, even for simple
linear data. Computers are not…

Shown is the famous
Fisher Iris dataset:
150 irises (3 kinds) with
4 measurements for each.

4 dimensional data!

Dimensionality and Complexity

17

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: ✓
Computers: ✓

Humans: ÷
Computers: ✓

Non-
linear

Humans:
Computers:

Humans:
Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

18Jackson Pollock

Dimensionality and Complexity

19

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: ✓
Computers: ✓

Humans: ÷
Computers: ✓

Non-
linear

Humans: ✓
Computers: (✓)

Humans:
Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

20

Naturally, I can’t show you high dimensional data!
This illustration is just a silly attempt at complexity.

Dimensionality and Complexity

21

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: ✓
Computers: ✓

Humans: ÷
Computers: ✓

Non-
linear

Humans: ✓
Computers: (✓)

Humans: ÷
Computers: (✓)

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!
That is essentially what Machine Learning has enabled!

Types of ML

22

23

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)… [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

We will be mostly on this side!

Unsupervised vs. Supervised
Classification vs. Regression

24

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)… [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

We will be mostly on this side!

Unsupervised vs. Supervised
Classification vs. Regression

And only briefly mention this side!

25

Reinforcement Learning

But not touch this further…

Two main ingredients:
1. Solutions exists

2. How to find them

26

Solutions exists
(Technically called Universal Approximation Theorems)

27

Why errors?!?Where to separate?

28

Look at the red and green points, and imagine that you wanted to draw a curve
that separates these.

Why errors?!?Where to separate?

29

Look at the red and green points, and imagine that you wanted to draw a curve
that separates these.

This could be an example:

Generally, we want to find a function that does this well!
But how to write such a function? In N-dim space?!?

Why errors?!?Universal Approx. Theorems

30

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
 Answer: Yes → Red
 Answer: No → Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.

Why errors?!?Universal Approx. Theorems

31

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
 Answer: Yes → Red
 Answer: No → Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.

Why errors?!?Universal Approx. Theorems

32

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
 Answer: Yes → Red
 Answer: No → Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.

Why errors?!?Universal Approx. Theorems

33

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
 Answer: Yes → Red
 Answer: No → Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.

Why errors?!?Universal Approx. Theorems

34

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
 Answer: Yes → Red
 Answer: No → Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.

Why errors?!?Universal Approx. Theorems

35

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.23?
 Answer: Yes → Red
 Answer: No → Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
questions, corresponding
to setting a lot of lines.

Why errors?!?Universal
Approximation Theorems

36

Why errors?!?Universal
Approximation Theorems

37

Summary:
Neural Networks etc. can approximate
functions in any dimension very well!

Why errors?!?Universal Approx. Theorems

38

Such approximations typically entails a large amount of parameters, for which
the UATs give no recipe on how to find - only that such a construction is possible.

How to find these
(Technically called Stochastic Gradient Descent)

39

Stochastic Gradient Descent
The way to obtain the parameters/weights of ML algorithms,

is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200–220. ISBN 9780262035613. 40

https://en.wikipedia.org/wiki/Ian_Goodfellow
https://en.wikipedia.org/wiki/Yoshua_Bengio
https://www.deeplearningbook.org/contents/mlp.html#pf25
https://www.deeplearningbook.org/contents/mlp.html#pf25
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780262035613

(Normal) Gradient Descent

41

The choice of loss function, L, depends on the problem at hand, and in particular
what you find important! You want to minimise this with respect to the model
parameters θ:

In order to find the optimal solution, one can use Gradient Descent, typically
based on the whole dataset:

This is the procedure used by e.g. Minuit and other minimisation routines.

Note the very important parameter: Learning rate η.

L(✓) =
1

N

NX

i

Li(✓)

<latexit sha1_base64="rDKwW2QxBmcunxG/PU9yaQeXNSs=">AAACL3icbVDLSsNAFJ3UV62vqks3g0Wom5KIohtBFMSFiILVQhPDZDpph04ezNwIJeSP3Pgr3Ygo4ta/cNJmoW0PDJw59x7uvceLBVdgmu9GaW5+YXGpvFxZWV1b36hubj2oKJGUNWkkItnyiGKCh6wJHARrxZKRwBPs0etf5PXHZyYVj8J7GMTMCUg35D6nBLTkVi+v67YXiU5AoJfa0GNAsn18im1fEppaWXqTYVslgZvy7Cn/XLt8hsOt1syGOQKeJlZBaqjArVsd2p2IJgELgQqiVNsyY3BSIoFTwbKKnSgWE9onXdbWNCQBU046ujfDe1rpYD+S+oWAR+pfR0oCpQaBpzvzLdVkLRdn1doJ+CdOysM4ARbS8SA/ERginIeHO1wyCmKgCaGS610x7RGdFOiIKzoEa/LkafJw0LAOG0d3h7Wz8yKOMtpBu6iOLHSMztAVukVNRNELGqIP9Gm8Gm/Gl/E9bi0ZhWcb/YPx8wsuO6nM</latexit>

✓j+1 = ✓j � ⌘rL(✓) = ✓j �
⌘

N

NX

i

rLi(✓)

<latexit sha1_base64="ZO5qZBjzVAgvNJEh0N15TeNOPg8=">AAACWHicbVFNSyMxGM7MtmvtftV69BIsC12WLTOLy3oRRC8eRCpYW+h0h3fSjI1mMkPyjlCG+ZMLHvSveDFtR9m1vhB48nyQ5EmUSWHQ8+4d912t/n6jsdn88PHT5y+trfalSXPN+IClMtWjCAyXQvEBCpR8lGkOSST5MLo5XujDW66NSNUFzjM+SeBKiVgwQEuFrTTAGUcIi+vvfkkP6Mu2pD9oYCENFEQS6Gl3JX1bM8UaWLGwlsVZSQOTJ2Ehyj/LTZUNxXM6bHW8nrccug78CnRINf2w9TeYpixPuEImwZix72U4KUCjYJKXzSA3PAN2A1d8bKGChJtJsSympF8tM6Vxqu1SSJfsv4kCEmPmSWSdCeDMvNYW5FvaOMd4f1IIleXIFVsdFOeSYkoXLdOp0JyhnFsATAt7V8pmYItC+xdNW4L/+snr4PJnz9/r/Trf6xweVXU0yA7ZJV3ik9/kkJyQPhkQRu7Io1Nz6s6DS9wNd3NldZ0qs03+G7f9BDvFsok=</latexit>

(Nasty) Loss Landscapes

42
arXiv: 1712.09913

Loss landscapes may (even in 2D) be very
complicated, with many local minima.

Stochastic Gradient Descent
The way to obtain the parameters/weights of ML algorithms,

is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

The gradient descent is made stochastic
(and fast) by only considering a fraction
(called a “batch”) of the data, when
calculating the step in the search for
optimal parameters for the algorithm.
This allow for stochastic jumping, that
avoids local (false) minima.
Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200–220. ISBN 9780262035613. 43

Ordinary
Gradient Descent

Stochastic
Gradient Descent

https://en.wikipedia.org/wiki/Ian_Goodfellow
https://en.wikipedia.org/wiki/Yoshua_Bengio
https://www.deeplearningbook.org/contents/mlp.html#pf25
https://www.deeplearningbook.org/contents/mlp.html#pf25
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780262035613

Stochastic Gradient Descent

44

In order to give the gradient descent some degree of “randomness” (stochastic),
one evaluates the below function for small batches instead of the full dataset.

The algorithm thus becomes:

Not only does this vectorise well and gives smoother descents, but with
decreasing learning rate, it “almost surely” finds the global minimum
(Robbins-Siegmund theorem).

✓j+1 = ✓j � ⌘rL(✓) = ✓j �
⌘

N

NX

i

rLi(✓)

<latexit sha1_base64="ZO5qZBjzVAgvNJEh0N15TeNOPg8=">AAACWHicbVFNSyMxGM7MtmvtftV69BIsC12WLTOLy3oRRC8eRCpYW+h0h3fSjI1mMkPyjlCG+ZMLHvSveDFtR9m1vhB48nyQ5EmUSWHQ8+4d912t/n6jsdn88PHT5y+trfalSXPN+IClMtWjCAyXQvEBCpR8lGkOSST5MLo5XujDW66NSNUFzjM+SeBKiVgwQEuFrTTAGUcIi+vvfkkP6Mu2pD9oYCENFEQS6Gl3JX1bM8UaWLGwlsVZSQOTJ2Ehyj/LTZUNxXM6bHW8nrccug78CnRINf2w9TeYpixPuEImwZix72U4KUCjYJKXzSA3PAN2A1d8bKGChJtJsSympF8tM6Vxqu1SSJfsv4kCEmPmSWSdCeDMvNYW5FvaOMd4f1IIleXIFVsdFOeSYkoXLdOp0JyhnFsATAt7V8pmYItC+xdNW4L/+snr4PJnz9/r/Trf6xweVXU0yA7ZJV3ik9/kkJyQPhkQRu7Io1Nz6s6DS9wNd3NldZ0qs03+G7f9BDvFsok=</latexit>

Lo
ss

Iterations

Learning Rate Schedulers

45

But, there is no reason to consider a fixed value for the learning rate!

More practically, one would typically adapt the learning rate to the situation:
• When exploring: Use larger learning rate.
• When exploiting: Use lower learning rate (when converging).

Below is illustrated what happens, when the learning rate is right/wrong.

From: https://www.jeremyjordan.me/nn-learning-rate/

https://www.jeremyjordan.me/nn-learning-rate/

Ingredients for ML

46

So now we know that at least in principle:
• a solution exists (Universal Approximation Theorem) and
• that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:
• actual functions/algorithms for making approximations

Boosted Decision Trees (BDTs) & Neural Networks (NNs)
• knowledge about how to tell them what to learn

Loss functions (and how to minimise these)
• a scheme for how to use the data we have available

Training, validation, and testing samples & Cross Validation

The linear analysis case

47

Simple Example

48

Problem: You want to figure out a method for getting sample that is mostly male!
Solution: Gather height data from 10000 people, Estimate cut with 95% purity!

Simple Example

49

Additional data: The data you find also contains shoe size!
How to use this? Well, it is more information, but should you cut on it?

The question is, what is the best way to use this (possibly correlated) information!

Simple Example

50

So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!

Advanced cut?
Clumsy and

hard to implement

Combine var?
Smart and
promising

The latter approach is the Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!

Simple Example

51

So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!

Advanced cut?
Clumsy and

hard to implement

Combine var?
Smart and
promising

The latter approach is the Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!

This is actually
how tree based
methods works!

This is what we
have been doing
for many years!

This is the most
elegant way,

when possible!

Non-linear cases

52

While the Fisher Discriminant uses all separations and linear correlations,
it does not perform optimally, when there are non-linear correlations present:

If the PDFs of signal and background are known, then one can use a likelihood.
But this is very rarely the case, and hence one should move on to the Fisher.
However, if correlations are non-linear, more “tough” methods are needed...

Tree based models

53

Decision tree learning

“Tree learning comes closest to meeting
the requirements for serving as an

off-the-shelf procedure for data mining”,
because it:
• is invariant under scaling and various other transformations of feature values,
• is robust to discontinuous, categorical, and irrelevant features,
• produces inspectable models.

HOWEVER… they are seldom accurate (i.e. most performant)!

[Trevor Hastie, Prof. of Mathematics & Statistics, Stanford]

54
Again, for tabular data, I tend to disagree with the last statement!

Decision Trees

55

A decision tree divides the parameter
space, starting with the maximal
separation. In the end each part has a
probability of being signal or
background.
• Works in 95+% of all problems!
• Fully uses non-linear correlations.

But BDTs require a lot of data for
training, and is sensitive to
overtraining.

Overtraining can be reduced by
limiting the number of nodes and
number of trees.

Decision trees are from before 1980!!!

Boosting… using many trees!

56

There is no reason, why you can not
have more trees. Each tree is a simple
classifier, but many can be combined!

To avoid N identical trees, one assigns
a higher weight to events that are hard
to classify, i.e. boosting:

Boosting is from 1997 (AdaBoost).

First classifier

Parameters in event N

Boost weight

Individual tree

Boosting… using many trees!

57

There is no reason, why you can not
have more trees. Each tree is a simple
classifier, but many can be combined!

To avoid N identical trees, one assigns
a higher weight to events that are hard
to classify, i.e. boosting:

Boosting is from 1997 (AdaBoost).

First classifier

Parameters in event N

Boost weight

Individual tree

Rerun…
increasing the weight

of misclassified entries

Boosting illustrated

58

Boosting provides a reweighing scheme giving harder cases higher weights.
At the end of training, the trees are collected into an “ensemble classifier”.

Where to split?

59

How does the algorithm decide which variable to split on and where to split?

There are several ways in which this can be done, and there is a difference
between how to do it for classification and regression. But in general, one would
like to make the split, which maximises the improvement gained by doing so.

In classification, one often uses the average binary cross entropy (aka. “log-loss”):

Here, is the truth, while is the estimate (in [0,1]).

Other alternatives include using Gini coefficients, Variance reduction, and even
ChiSquare. However, in classification the above is somewhat “standard”.

L = � 1

N

NX

n=1

[yn log ŷn + (1� yn) log(1� ŷn)]
<latexit sha1_base64="wivFDNTeyvM8zS9oqSNLgGsmn2k=">AAACTHicbZBNaxsxEIa1buu67pebHHsRNQWXYrMbCs3FYJJLDiUkUCcB73bRylpbWKtdpNnAIvYH9tJDbv0VveSQUgoZf1BauwOCZ953BklvUihpwfe/e40HDx81H7eetJ8+e/7iZefV3oXNS8PFmOcqN1cJs0JJLcYgQYmrwgiWJUpcJovjpX95LYyVuf4MVSGijM20TCVngFLc4S7kTNFPNR3Sfpgaxl1Qu9OahrbMvpzGTg8DbJRIYUKrWCPmMxrOGbiqxvY97QV91N+tDWz+eCgZOZtDFHe6/sBfFd2FYANdsqmzuHMTTnNeZkIDV8zaSeAXEDlmQHIl6nZYWlEwvmAzMUHULBM2cqswavoWlSlNc4NHA12pf284lllbZQlOZgzmdttbiv/zJiWkh5GTuihBaL6+KC0VhZwuk6VTaQQHVSEwbiS+lfI5w0QB829jCMH2l3fh4mAQIJ9/6I6ONnG0yGvyhvRIQD6SETkhZ2RMOPlKfpA78tP75t16v7zf69GGt9nZJ/9Uo3kPFxexkw==</latexit><latexit sha1_base64="wivFDNTeyvM8zS9oqSNLgGsmn2k=">AAACTHicbZBNaxsxEIa1buu67pebHHsRNQWXYrMbCs3FYJJLDiUkUCcB73bRylpbWKtdpNnAIvYH9tJDbv0VveSQUgoZf1BauwOCZ953BklvUihpwfe/e40HDx81H7eetJ8+e/7iZefV3oXNS8PFmOcqN1cJs0JJLcYgQYmrwgiWJUpcJovjpX95LYyVuf4MVSGijM20TCVngFLc4S7kTNFPNR3Sfpgaxl1Qu9OahrbMvpzGTg8DbJRIYUKrWCPmMxrOGbiqxvY97QV91N+tDWz+eCgZOZtDFHe6/sBfFd2FYANdsqmzuHMTTnNeZkIDV8zaSeAXEDlmQHIl6nZYWlEwvmAzMUHULBM2cqswavoWlSlNc4NHA12pf284lllbZQlOZgzmdttbiv/zJiWkh5GTuihBaL6+KC0VhZwuk6VTaQQHVSEwbiS+lfI5w0QB829jCMH2l3fh4mAQIJ9/6I6ONnG0yGvyhvRIQD6SETkhZ2RMOPlKfpA78tP75t16v7zf69GGt9nZJ/9Uo3kPFxexkw==</latexit><latexit sha1_base64="wivFDNTeyvM8zS9oqSNLgGsmn2k=">AAACTHicbZBNaxsxEIa1buu67pebHHsRNQWXYrMbCs3FYJJLDiUkUCcB73bRylpbWKtdpNnAIvYH9tJDbv0VveSQUgoZf1BauwOCZ953BklvUihpwfe/e40HDx81H7eetJ8+e/7iZefV3oXNS8PFmOcqN1cJs0JJLcYgQYmrwgiWJUpcJovjpX95LYyVuf4MVSGijM20TCVngFLc4S7kTNFPNR3Sfpgaxl1Qu9OahrbMvpzGTg8DbJRIYUKrWCPmMxrOGbiqxvY97QV91N+tDWz+eCgZOZtDFHe6/sBfFd2FYANdsqmzuHMTTnNeZkIDV8zaSeAXEDlmQHIl6nZYWlEwvmAzMUHULBM2cqswavoWlSlNc4NHA12pf284lllbZQlOZgzmdttbiv/zJiWkh5GTuihBaL6+KC0VhZwuk6VTaQQHVSEwbiS+lfI5w0QB829jCMH2l3fh4mAQIJ9/6I6ONnG0yGvyhvRIQD6SETkhZ2RMOPlKfpA78tP75t16v7zf69GGt9nZJ/9Uo3kPFxexkw==</latexit><latexit sha1_base64="wivFDNTeyvM8zS9oqSNLgGsmn2k=">AAACTHicbZBNaxsxEIa1buu67pebHHsRNQWXYrMbCs3FYJJLDiUkUCcB73bRylpbWKtdpNnAIvYH9tJDbv0VveSQUgoZf1BauwOCZ953BklvUihpwfe/e40HDx81H7eetJ8+e/7iZefV3oXNS8PFmOcqN1cJs0JJLcYgQYmrwgiWJUpcJovjpX95LYyVuf4MVSGijM20TCVngFLc4S7kTNFPNR3Sfpgaxl1Qu9OahrbMvpzGTg8DbJRIYUKrWCPmMxrOGbiqxvY97QV91N+tDWz+eCgZOZtDFHe6/sBfFd2FYANdsqmzuHMTTnNeZkIDV8zaSeAXEDlmQHIl6nZYWlEwvmAzMUHULBM2cqswavoWlSlNc4NHA12pf284lllbZQlOZgzmdttbiv/zJiWkh5GTuihBaL6+KC0VhZwuk6VTaQQHVSEwbiS+lfI5w0QB829jCMH2l3fh4mAQIJ9/6I6ONnG0yGvyhvRIQD6SETkhZ2RMOPlKfpA78tP75t16v7zf69GGt9nZJ/9Uo3kPFxexkw==</latexit>

yn
<latexit sha1_base64="WlkeYjT9Tam6qA6xx47IY0zRfYM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYIoT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5HZW7zyh0jyWjyZL0I/oSPKQM2qs9ZAN5KBac+vuXGQVvAJqUKg5qH71hzFLI5SGCap1z3MT4+dUGc4ETiv9VGNC2YSOsGdR0gi1n89XnZIz6wxJGCv7pCFz9/dETiOtsyiwnRE1Y71cm5n/1XqpCa/9nMskNSjZ4qMwFcTEZHY3GXKFzIjMAmWK210JG1NFmbHpVGwI3vLJq9C+qHuW7y9rjZsijjKcwCmcgwdX0IA7aEILGIzgGV7hzRHOi/PufCxaS04xcwx/5Hz+AGmsjd4=</latexit><latexit sha1_base64="WlkeYjT9Tam6qA6xx47IY0zRfYM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYIoT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5HZW7zyh0jyWjyZL0I/oSPKQM2qs9ZAN5KBac+vuXGQVvAJqUKg5qH71hzFLI5SGCap1z3MT4+dUGc4ETiv9VGNC2YSOsGdR0gi1n89XnZIz6wxJGCv7pCFz9/dETiOtsyiwnRE1Y71cm5n/1XqpCa/9nMskNSjZ4qMwFcTEZHY3GXKFzIjMAmWK210JG1NFmbHpVGwI3vLJq9C+qHuW7y9rjZsijjKcwCmcgwdX0IA7aEILGIzgGV7hzRHOi/PufCxaS04xcwx/5Hz+AGmsjd4=</latexit><latexit sha1_base64="WlkeYjT9Tam6qA6xx47IY0zRfYM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYIoT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5HZW7zyh0jyWjyZL0I/oSPKQM2qs9ZAN5KBac+vuXGQVvAJqUKg5qH71hzFLI5SGCap1z3MT4+dUGc4ETiv9VGNC2YSOsGdR0gi1n89XnZIz6wxJGCv7pCFz9/dETiOtsyiwnRE1Y71cm5n/1XqpCa/9nMskNSjZ4qMwFcTEZHY3GXKFzIjMAmWK210JG1NFmbHpVGwI3vLJq9C+qHuW7y9rjZsijjKcwCmcgwdX0IA7aEILGIzgGV7hzRHOi/PufCxaS04xcwx/5Hz+AGmsjd4=</latexit><latexit sha1_base64="WlkeYjT9Tam6qA6xx47IY0zRfYM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYIoT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5HZW7zyh0jyWjyZL0I/oSPKQM2qs9ZAN5KBac+vuXGQVvAJqUKg5qH71hzFLI5SGCap1z3MT4+dUGc4ETiv9VGNC2YSOsGdR0gi1n89XnZIz6wxJGCv7pCFz9/dETiOtsyiwnRE1Y71cm5n/1XqpCa/9nMskNSjZ4qMwFcTEZHY3GXKFzIjMAmWK210JG1NFmbHpVGwI3vLJq9C+qHuW7y9rjZsijjKcwCmcgwdX0IA7aEILGIzgGV7hzRHOi/PufCxaS04xcwx/5Hz+AGmsjd4=</latexit>

ŷn
<latexit sha1_base64="x7LQuQFp+s0+yGbU4APRLi6uZUY=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNdtMu3WzC7kQIob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrezeueJayNi9YBZwv2IjpQIBaNorcf+mGKeTQdqUK25dXcusgpeATUo1BxUv/rDmKURV8gkNabnuQn6OdUomOTTSj81PKFsQke8Z1HRiBs/ny88JWfWGZIw1vYpJHP390ROI2OyKLCdEcWxWa7NzP9qvRTDaz8XKkmRK7b4KEwlwZjMridDoTlDmVmgTAu7K2FjqilDm1HFhuAtn7wK7Yu6Z/n+sta4KeIowwmcwjl4cAUNuIMmtIBBBM/wCm+Odl6cd+dj0Vpyiplj+CPn8wc46pCr</latexit><latexit sha1_base64="x7LQuQFp+s0+yGbU4APRLi6uZUY=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNdtMu3WzC7kQIob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrezeueJayNi9YBZwv2IjpQIBaNorcf+mGKeTQdqUK25dXcusgpeATUo1BxUv/rDmKURV8gkNabnuQn6OdUomOTTSj81PKFsQke8Z1HRiBs/ny88JWfWGZIw1vYpJHP390ROI2OyKLCdEcWxWa7NzP9qvRTDaz8XKkmRK7b4KEwlwZjMridDoTlDmVmgTAu7K2FjqilDm1HFhuAtn7wK7Yu6Z/n+sta4KeIowwmcwjl4cAUNuIMmtIBBBM/wCm+Odl6cd+dj0Vpyiplj+CPn8wc46pCr</latexit><latexit sha1_base64="x7LQuQFp+s0+yGbU4APRLi6uZUY=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNdtMu3WzC7kQIob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrezeueJayNi9YBZwv2IjpQIBaNorcf+mGKeTQdqUK25dXcusgpeATUo1BxUv/rDmKURV8gkNabnuQn6OdUomOTTSj81PKFsQke8Z1HRiBs/ny88JWfWGZIw1vYpJHP390ROI2OyKLCdEcWxWa7NzP9qvRTDaz8XKkmRK7b4KEwlwZjMridDoTlDmVmgTAu7K2FjqilDm1HFhuAtn7wK7Yu6Z/n+sta4KeIowwmcwjl4cAUNuIMmtIBBBM/wCm+Odl6cd+dj0Vpyiplj+CPn8wc46pCr</latexit><latexit sha1_base64="x7LQuQFp+s0+yGbU4APRLi6uZUY=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNdtMu3WzC7kQIob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrezeueJayNi9YBZwv2IjpQIBaNorcf+mGKeTQdqUK25dXcusgpeATUo1BxUv/rDmKURV8gkNabnuQn6OdUomOTTSj81PKFsQke8Z1HRiBs/ny88JWfWGZIw1vYpJHP390ROI2OyKLCdEcWxWa7NzP9qvRTDaz8XKkmRK7b4KEwlwZjMridDoTlDmVmgTAu7K2FjqilDm1HFhuAtn7wK7Yu6Z/n+sta4KeIowwmcwjl4cAUNuIMmtIBBBM/wCm+Odl6cd+dj0Vpyiplj+CPn8wc46pCr</latexit>

Housing Prices decision tree
Decision tree for estimating the price in the housing prices data set:

60

SIZE_OF_HOUSE � 462.0
mse = 1.3836907023e+13

samples = 7014
value = 2028954.3037

POSTAL_CODE � 3110.0
mse = 1.16202252824e+13

samples = 6986
value = 1963348.0471

True

CONSTRUCTION_YEAR � 1812.0
mse = 2.97888770906e+14

samples = 28
value = 18397715.3214

False

CONSTRUCTION_YEAR � 2008.5
mse = 3.24355593067e+13

samples = 2045
value = 3009605.7873

SIZE_OF_HOUSE � 144.5
mse = 2.36452076724e+12

samples = 4941
value = 1530318.8873

SIZE_OF_HOUSE � 93.5
mse = 1.21226579817e+13

samples = 2017
value = 2856024.2117

SIZE_OF_HOUSE � 75.5
mse = 1.37159288618e+15

samples = 28
value = 14072964.2857

SIZE_OF_HOUSE � 69.5
mse = 9.6302785191e+11

samples = 1044
value = 1835135.3046

SIZE_OF_HOUSE � 197.5
mse = 2.17784790424e+13

samples = 973
value = 3951407.5817

POSTAL_CODE � 2150.0
mse = 3.01262236943e+11

samples = 628
value = 1448233.1497

POSTAL_CODE � 2250.0
mse = 1.39491834099e+12

samples = 416
value = 2419208.75

(...) (...) (...) (...)

POSTAL_CODE � 3025.0
mse = 2.18472117891e+13

samples = 888
value = 3643273.0574

CONSTRUCTION_YEAR � 1920.0
mse = 9.70590670627e+12

samples = 85
value = 7170507.0824

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1 � 43.455
mse = 4.71096888889e+15

samples = 3
value = 98966666.6667

SIZE_OF_HOUSE � 119.0
mse = 2.2549352416e+12

samples = 25
value = 3885720.0

mse = 0.0
samples = 1

value = 1900000.0

mse = 0.0
samples = 2

value = 147500000.0

POSTAL_CODE � 2530.0
mse = 4.67412066116e+11

samples = 11
value = 2693454.5455

CONSTRUCTION_YEAR � 2009.5
mse = 1.66497053571e+12

samples = 14
value = 4822500.0

(...) (...) (...) (...)

SCHOOL_DISTANCE_1 � 1695.405
mse = 9.79228685447e+11

samples = 3444
value = 1259853.806

SIZE_OF_HOUSE � 235.5
mse = 4.99606026506e+12

samples = 1497
value = 2152551.1784

CONSTRUCTION_YEAR � 1992.5
mse = 1.11305113191e+12

samples = 2466
value = 1381273.9976

CONSTRUCTION_YEAR � 1985.5
mse = 5.10892846075e+11

samples = 978
value = 953696.1452

POSTAL_CODE � 7995.0
mse = 1.12755765182e+12

samples = 2220
value = 1319770.4707

SIZE_OF_HOUSE � 116.5
mse = 6.39941890563e+11

samples = 246
value = 1936305.8252

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1 � 1224.845
mse = 4.37090668214e+11

samples = 802
value = 856331.2918

SIZE_OF_HOUSE � 97.5
mse = 6.07151144402e+11

samples = 176
value = 1397370.0795

(...) (...) (...) (...)

POSTAL_CODE � 3680.0
mse = 3.68022716583e+12

samples = 1345
value = 2019988.1539

POSTAL_CODE � 7980.0
mse = 1.51080057315e+13

samples = 152
value = 3325559.5197

POSTAL_CODE � 3395.0
mse = 2.25780802539e+12

samples = 116
value = 3138769.319

CONSTRUCTION_YEAR � 1993.5
mse = 3.68519260761e+12

samples = 1229
value = 1914391.2335

(...) (...) (...) (...)

POSTAL_CODE � 4230.5
mse = 4.84879610682e+12

samples = 100
value = 2580827.09

SUPERMARKET_DISTANCE_1 � 2506.5801
mse = 3.17195326885e+13

samples = 52
value = 4757737.2692

(...) (...) (...) (...)

mse = 0.0
samples = 1

value = 74000000.0

CONSTRUCTION_YEAR � 1952.0
mse = 1.90176566644e+14

samples = 27
value = 16338371.4444

POSTAL_CODE � 3700.0
mse = 7.16446841277e+13

samples = 24
value = 12953411.8333

POSTAL_CODE � 2790.0
mse = 3.13459113818e+14

samples = 3
value = 43418048.3333

SUPERMARKET_DISTANCE_1 � 152.015
mse = 6.46729877876e+13

samples = 10
value = 18529888.4

POSTAL_CODE � 9670.0
mse = 3.85463967398e+13

samples = 14
value = 8970214.2857

SCHOOL_DISTANCE_1 � 242.72
mse = 4.95428753902e+13

samples = 5
value = 24129776.8

SCHOOL_DISTANCE_1 � 194.09
mse = 1.70856e+13

samples = 5
value = 12930000.0

(...) (...) (...) (...)

CONSTRUCTION_YEAR � 1908.0
mse = 2.67103595385e+13

samples = 13
value = 7942000.0

mse = 0.0
samples = 1

value = 22337000.0

(...) (...)

mse = 0.0
samples = 1

value = 18500000.0

POSTAL_CODE � 4360.5
mse = 4.50682117026e+12

samples = 2
value = 55877072.5

mse = 0.0
samples = 1

value = 58000000.0

mse = 0.0
samples = 1

value = 53754145.0

SIZE_OF_HOUSE � 462.0
mse = 1.3836907023e+13

samples = 7014
value = 2028954.3037

POSTAL_CODE � 3110.0
mse = 1.16202252824e+13

samples = 6986
value = 1963348.0471

True

CONSTRUCTION_YEAR � 1812.0
mse = 2.97888770906e+14

samples = 28
value = 18397715.3214

False

CONSTRUCTION_YEAR � 2008.5
mse = 3.24355593067e+13

samples = 2045
value = 3009605.7873

SIZE_OF_HOUSE � 144.5
mse = 2.36452076724e+12

samples = 4941
value = 1530318.8873

SIZE_OF_HOUSE � 93.5
mse = 1.21226579817e+13

samples = 2017
value = 2856024.2117

SIZE_OF_HOUSE � 75.5
mse = 1.37159288618e+15

samples = 28
value = 14072964.2857

SIZE_OF_HOUSE � 69.5
mse = 9.6302785191e+11

samples = 1044
value = 1835135.3046

SIZE_OF_HOUSE � 197.5
mse = 2.17784790424e+13

samples = 973
value = 3951407.5817

POSTAL_CODE � 2150.0
mse = 3.01262236943e+11

samples = 628
value = 1448233.1497

POSTAL_CODE � 2250.0
mse = 1.39491834099e+12

samples = 416
value = 2419208.75

(...) (...) (...) (...)

POSTAL_CODE � 3025.0
mse = 2.18472117891e+13

samples = 888
value = 3643273.0574

CONSTRUCTION_YEAR � 1920.0
mse = 9.70590670627e+12

samples = 85
value = 7170507.0824

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1 � 43.455
mse = 4.71096888889e+15

samples = 3
value = 98966666.6667

SIZE_OF_HOUSE � 119.0
mse = 2.2549352416e+12

samples = 25
value = 3885720.0

mse = 0.0
samples = 1

value = 1900000.0

mse = 0.0
samples = 2

value = 147500000.0

POSTAL_CODE � 2530.0
mse = 4.67412066116e+11

samples = 11
value = 2693454.5455

CONSTRUCTION_YEAR � 2009.5
mse = 1.66497053571e+12

samples = 14
value = 4822500.0

(...) (...) (...) (...)

SCHOOL_DISTANCE_1 � 1695.405
mse = 9.79228685447e+11

samples = 3444
value = 1259853.806

SIZE_OF_HOUSE � 235.5
mse = 4.99606026506e+12

samples = 1497
value = 2152551.1784

CONSTRUCTION_YEAR � 1992.5
mse = 1.11305113191e+12

samples = 2466
value = 1381273.9976

CONSTRUCTION_YEAR � 1985.5
mse = 5.10892846075e+11

samples = 978
value = 953696.1452

POSTAL_CODE � 7995.0
mse = 1.12755765182e+12

samples = 2220
value = 1319770.4707

SIZE_OF_HOUSE � 116.5
mse = 6.39941890563e+11

samples = 246
value = 1936305.8252

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1 � 1224.845
mse = 4.37090668214e+11

samples = 802
value = 856331.2918

SIZE_OF_HOUSE � 97.5
mse = 6.07151144402e+11

samples = 176
value = 1397370.0795

(...) (...) (...) (...)

POSTAL_CODE � 3680.0
mse = 3.68022716583e+12

samples = 1345
value = 2019988.1539

POSTAL_CODE � 7980.0
mse = 1.51080057315e+13

samples = 152
value = 3325559.5197

POSTAL_CODE � 3395.0
mse = 2.25780802539e+12

samples = 116
value = 3138769.319

CONSTRUCTION_YEAR � 1993.5
mse = 3.68519260761e+12

samples = 1229
value = 1914391.2335

(...) (...) (...) (...)

POSTAL_CODE � 4230.5
mse = 4.84879610682e+12

samples = 100
value = 2580827.09

SUPERMARKET_DISTANCE_1 � 2506.5801
mse = 3.17195326885e+13

samples = 52
value = 4757737.2692

(...) (...) (...) (...)

mse = 0.0
samples = 1

value = 74000000.0

CONSTRUCTION_YEAR � 1952.0
mse = 1.90176566644e+14

samples = 27
value = 16338371.4444

POSTAL_CODE � 3700.0
mse = 7.16446841277e+13

samples = 24
value = 12953411.8333

POSTAL_CODE � 2790.0
mse = 3.13459113818e+14

samples = 3
value = 43418048.3333

SUPERMARKET_DISTANCE_1 � 152.015
mse = 6.46729877876e+13

samples = 10
value = 18529888.4

POSTAL_CODE � 9670.0
mse = 3.85463967398e+13

samples = 14
value = 8970214.2857

SCHOOL_DISTANCE_1 � 242.72
mse = 4.95428753902e+13

samples = 5
value = 24129776.8

SCHOOL_DISTANCE_1 � 194.09
mse = 1.70856e+13

samples = 5
value = 12930000.0

(...) (...) (...) (...)

CONSTRUCTION_YEAR � 1908.0
mse = 2.67103595385e+13

samples = 13
value = 7942000.0

mse = 0.0
samples = 1

value = 22337000.0

(...) (...)

mse = 0.0
samples = 1

value = 18500000.0

POSTAL_CODE � 4360.5
mse = 4.50682117026e+12

samples = 2
value = 55877072.5

mse = 0.0
samples = 1

value = 58000000.0

mse = 0.0
samples = 1

value = 53754145.0

Housing Type decision tree
Decision tree for determining, if a house will be sold for more or less than 2Mkr.

61

POSTAL_CODE � 3615.0
gini = 0.4521

samples = 7014
value = [2422, 4592]

class = 1

SIZE_OF_HOUSE � 75.5
gini = 0.4875

samples = 2477
value = [1434, 1043]

class = 0

True SIZE_OF_HOUSE � 136.5
gini = 0.3407

samples = 4537
value = [988, 3549]

class = 1

False

POSTAL_CODE � 2150.0
gini = 0.2997

samples = 839
value = [154, 685]

class = 1

POSTAL_CODE � 2975.0
gini = 0.3416

samples = 1638
value = [1280, 358]

class = 0

SIZE_OF_HOUSE � 60.5
gini = 0.4997

samples = 170
value = [87, 83]

class = 0

CONSTRUCTION_YEAR � 1906.5
gini = 0.1802

samples = 669
value = [67, 602]

class = 1

POSTAL_CODE � 1515.0
gini = 0.375

samples = 76
value = [19, 57]

class = 1

CONSTRUCTION_YEAR � 1921.5
gini = 0.4002
samples = 94

value = [68, 26]
class = 0

SIZE_OF_HOUSE � 39.0
gini = 0.4592
samples = 14
value = [9, 5]

class = 0

SCHOOL_DISTANCE_1 � 527.9399
gini = 0.2706
samples = 62

value = [10, 52]
class = 1

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1 � 29.51
gini = 0.162

samples = 45
value = [41, 4]

class = 0

SIZE_OF_HOUSE � 70.5
gini = 0.4948
samples = 49

value = [27, 22]
class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE � 54.5
gini = 0.4922
samples = 48

value = [21, 27]
class = 1

CONSTRUCTION_YEAR � 1998.0
gini = 0.1372

samples = 621
value = [46, 575]

class = 1

SCHOOL_DISTANCE_1 � 153.245
gini = 0.2975
samples = 22
value = [4, 18]

class = 1

POSTAL_CODE � 3200.0
gini = 0.4527
samples = 26
value = [17, 9]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE � 67.5
gini = 0.1141

samples = 609
value = [37, 572]

class = 1

SUPERMARKET_DISTANCE_1 � 42.965
gini = 0.375

samples = 12
value = [9, 3]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE � 88.5
gini = 0.256

samples = 1221
value = [1037, 184]

class = 0

SIZE_OF_HOUSE � 116.5
gini = 0.4863

samples = 417
value = [243, 174]

class = 0

POSTAL_CODE � 2350.0
gini = 0.4435

samples = 232
value = [155, 77]

class = 0

POSTAL_CODE � 2550.0
gini = 0.193

samples = 989
value = [882, 107]

class = 0

SIZE_OF_HOUSE � 77.5
gini = 0.0915

samples = 104
value = [99, 5]

class = 0

POSTAL_CODE � 2725.0
gini = 0.4922

samples = 128
value = [56, 72]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE � 161.5
gini = 0.0454

samples = 301
value = [294, 7]

class = 0

POSTAL_CODE � 2695.0
gini = 0.2484

samples = 688
value = [588, 100]

class = 0

(...) (...) (...) (...)

POSTAL_CODE � 3395.0
gini = 0.4359

samples = 162
value = [52, 110]

class = 1

POSTAL_CODE � 3395.0
gini = 0.376

samples = 255
value = [191, 64]

class = 0

POSTAL_CODE � 3085.0
gini = 0.32

samples = 110
value = [22, 88]

class = 1

SIZE_OF_HOUSE � 98.5
gini = 0.4882
samples = 52

value = [30, 22]
class = 0

(...) (...) (...) (...)

POSTAL_CODE � 3175.0
gini = 0.4717

samples = 126
value = [78, 48]

class = 0

CONSTRUCTION_YEAR � 1970.5
gini = 0.2173

samples = 129
value = [113, 16]

class = 0

(...) (...) (...) (...)

POSTAL_CODE � 7995.0
gini = 0.21

samples = 2885
value = [344, 2541]

class = 1

CONSTRUCTION_YEAR � 1994.5
gini = 0.4757

samples = 1652
value = [644, 1008]

class = 1

SIZE_OF_HOUSE � 118.5
gini = 0.1306

samples = 1752
value = [123, 1629]

class = 1

POSTAL_CODE � 8285.0
gini = 0.314

samples = 1133
value = [221, 912]

class = 1

CONSTRUCTION_YEAR � 2005.5
gini = 0.0904

samples = 1349
value = [64, 1285]

class = 1

POSTAL_CODE � 4045.0
gini = 0.2499

samples = 403
value = [59, 344]

class = 1

CONSTRUCTION_YEAR � 1954.5
gini = 0.0788

samples = 1290
value = [53, 1237]

class = 1

POSTAL_CODE � 4025.0
gini = 0.3034
samples = 59

value = [11, 48]
class = 1

(...) (...) (...) (...)

POSTAL_CODE � 3895.0
gini = 0.4938
samples = 36

value = [16, 20]
class = 1

CONSTRUCTION_YEAR � 2012.5
gini = 0.2069

samples = 367
value = [43, 324]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE � 76.5
gini = 0.4982

samples = 249
value = [117, 132]

class = 1

CONSTRUCTION_YEAR � 1993.0
gini = 0.2076

samples = 884
value = [104, 780]

class = 1

SIZE_OF_HOUSE � 65.5
gini = 0.29

samples = 125
value = [22, 103]

class = 1

POSTAL_CODE � 8245.0
gini = 0.3584

samples = 124
value = [95, 29]

class = 0

(...) (...) (...) (...)

POSTAL_CODE � 8435.0
gini = 0.1584

samples = 784
value = [68, 716]

class = 1

SIZE_OF_HOUSE � 105.5
gini = 0.4608

samples = 100
value = [36, 64]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE � 223.0
gini = 0.4441

samples = 1409
value = [469, 940]

class = 1

SUPERMARKET_DISTANCE_1 � 3380.5151
gini = 0.4031

samples = 243
value = [175, 68]

class = 0

SUPERMARKET_DISTANCE_1 � 1352.8049
gini = 0.4199

samples = 1227
value = [368, 859]

class = 1

SIZE_OF_HOUSE � 372.5
gini = 0.494

samples = 182
value = [101, 81]

class = 0

POSTAL_CODE � 4160.0
gini = 0.4479

samples = 942
value = [319, 623]

class = 1

SIZE_OF_HOUSE � 175.5
gini = 0.2847

samples = 285
value = [49, 236]

class = 1

(...) (...) (...) (...)

POSTAL_CODE � 7895.0
gini = 0.5

samples = 157
value = [78, 79]

class = 1

CONSTRUCTION_YEAR � 1903.0
gini = 0.1472
samples = 25
value = [23, 2]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE � 166.5
gini = 0.3833

samples = 236
value = [175, 61]

class = 0

gini = 0.0
samples = 7
value = [0, 7]

class = 1

POSTAL_CODE � 8025.0
gini = 0.4624

samples = 124
value = [79, 45]

class = 0

SCHOOL_DISTANCE_1 � 664.175
gini = 0.2449

samples = 112
value = [96, 16]

class = 0

(...) (...) (...) (...)

POSTAL_CODE � 3615.0
gini = 0.4521

samples = 7014
value = [2422, 4592]

class = 1

SIZE_OF_HOUSE � 75.5
gini = 0.4875

samples = 2477
value = [1434, 1043]

class = 0

True SIZE_OF_HOUSE � 136.5
gini = 0.3407

samples = 4537
value = [988, 3549]

class = 1

False

POSTAL_CODE � 2150.0
gini = 0.2997

samples = 839
value = [154, 685]

class = 1

POSTAL_CODE � 2975.0
gini = 0.3416

samples = 1638
value = [1280, 358]

class = 0

SIZE_OF_HOUSE � 60.5
gini = 0.4997

samples = 170
value = [87, 83]

class = 0

CONSTRUCTION_YEAR � 1906.5
gini = 0.1802

samples = 669
value = [67, 602]

class = 1

POSTAL_CODE � 1515.0
gini = 0.375

samples = 76
value = [19, 57]

class = 1

CONSTRUCTION_YEAR � 1921.5
gini = 0.4002
samples = 94

value = [68, 26]
class = 0

SIZE_OF_HOUSE � 39.0
gini = 0.4592
samples = 14
value = [9, 5]

class = 0

SCHOOL_DISTANCE_1 � 527.9399
gini = 0.2706
samples = 62

value = [10, 52]
class = 1

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1 � 29.51
gini = 0.162

samples = 45
value = [41, 4]

class = 0

SIZE_OF_HOUSE � 70.5
gini = 0.4948
samples = 49

value = [27, 22]
class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE � 54.5
gini = 0.4922
samples = 48

value = [21, 27]
class = 1

CONSTRUCTION_YEAR � 1998.0
gini = 0.1372

samples = 621
value = [46, 575]

class = 1

SCHOOL_DISTANCE_1 � 153.245
gini = 0.2975
samples = 22
value = [4, 18]

class = 1

POSTAL_CODE � 3200.0
gini = 0.4527
samples = 26
value = [17, 9]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE � 67.5
gini = 0.1141

samples = 609
value = [37, 572]

class = 1

SUPERMARKET_DISTANCE_1 � 42.965
gini = 0.375

samples = 12
value = [9, 3]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE � 88.5
gini = 0.256

samples = 1221
value = [1037, 184]

class = 0

SIZE_OF_HOUSE � 116.5
gini = 0.4863

samples = 417
value = [243, 174]

class = 0

POSTAL_CODE � 2350.0
gini = 0.4435

samples = 232
value = [155, 77]

class = 0

POSTAL_CODE � 2550.0
gini = 0.193

samples = 989
value = [882, 107]

class = 0

SIZE_OF_HOUSE � 77.5
gini = 0.0915

samples = 104
value = [99, 5]

class = 0

POSTAL_CODE � 2725.0
gini = 0.4922

samples = 128
value = [56, 72]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE � 161.5
gini = 0.0454

samples = 301
value = [294, 7]

class = 0

POSTAL_CODE � 2695.0
gini = 0.2484

samples = 688
value = [588, 100]

class = 0

(...) (...) (...) (...)

POSTAL_CODE � 3395.0
gini = 0.4359

samples = 162
value = [52, 110]

class = 1

POSTAL_CODE � 3395.0
gini = 0.376

samples = 255
value = [191, 64]

class = 0

POSTAL_CODE � 3085.0
gini = 0.32

samples = 110
value = [22, 88]

class = 1

SIZE_OF_HOUSE � 98.5
gini = 0.4882
samples = 52

value = [30, 22]
class = 0

(...) (...) (...) (...)

POSTAL_CODE � 3175.0
gini = 0.4717

samples = 126
value = [78, 48]

class = 0

CONSTRUCTION_YEAR � 1970.5
gini = 0.2173

samples = 129
value = [113, 16]

class = 0

(...) (...) (...) (...)

POSTAL_CODE � 7995.0
gini = 0.21

samples = 2885
value = [344, 2541]

class = 1

CONSTRUCTION_YEAR � 1994.5
gini = 0.4757

samples = 1652
value = [644, 1008]

class = 1

SIZE_OF_HOUSE � 118.5
gini = 0.1306

samples = 1752
value = [123, 1629]

class = 1

POSTAL_CODE � 8285.0
gini = 0.314

samples = 1133
value = [221, 912]

class = 1

CONSTRUCTION_YEAR � 2005.5
gini = 0.0904

samples = 1349
value = [64, 1285]

class = 1

POSTAL_CODE � 4045.0
gini = 0.2499

samples = 403
value = [59, 344]

class = 1

CONSTRUCTION_YEAR � 1954.5
gini = 0.0788

samples = 1290
value = [53, 1237]

class = 1

POSTAL_CODE � 4025.0
gini = 0.3034
samples = 59

value = [11, 48]
class = 1

(...) (...) (...) (...)

POSTAL_CODE � 3895.0
gini = 0.4938
samples = 36

value = [16, 20]
class = 1

CONSTRUCTION_YEAR � 2012.5
gini = 0.2069

samples = 367
value = [43, 324]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE � 76.5
gini = 0.4982

samples = 249
value = [117, 132]

class = 1

CONSTRUCTION_YEAR � 1993.0
gini = 0.2076

samples = 884
value = [104, 780]

class = 1

SIZE_OF_HOUSE � 65.5
gini = 0.29

samples = 125
value = [22, 103]

class = 1

POSTAL_CODE � 8245.0
gini = 0.3584

samples = 124
value = [95, 29]

class = 0

(...) (...) (...) (...)

POSTAL_CODE � 8435.0
gini = 0.1584

samples = 784
value = [68, 716]

class = 1

SIZE_OF_HOUSE � 105.5
gini = 0.4608

samples = 100
value = [36, 64]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE � 223.0
gini = 0.4441

samples = 1409
value = [469, 940]

class = 1

SUPERMARKET_DISTANCE_1 � 3380.5151
gini = 0.4031

samples = 243
value = [175, 68]

class = 0

SUPERMARKET_DISTANCE_1 � 1352.8049
gini = 0.4199

samples = 1227
value = [368, 859]

class = 1

SIZE_OF_HOUSE � 372.5
gini = 0.494

samples = 182
value = [101, 81]

class = 0

POSTAL_CODE � 4160.0
gini = 0.4479

samples = 942
value = [319, 623]

class = 1

SIZE_OF_HOUSE � 175.5
gini = 0.2847

samples = 285
value = [49, 236]

class = 1

(...) (...) (...) (...)

POSTAL_CODE � 7895.0
gini = 0.5

samples = 157
value = [78, 79]

class = 1

CONSTRUCTION_YEAR � 1903.0
gini = 0.1472
samples = 25
value = [23, 2]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE � 166.5
gini = 0.3833

samples = 236
value = [175, 61]

class = 0

gini = 0.0
samples = 7
value = [0, 7]

class = 1

POSTAL_CODE � 8025.0
gini = 0.4624

samples = 124
value = [79, 45]

class = 0

SCHOOL_DISTANCE_1 � 664.175
gini = 0.2449

samples = 112
value = [96, 16]

class = 0

(...) (...) (...) (...)

XGboost - a neat little story!

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!

62

The HiggsML Kaggle Challenge

63

CERN analyses its data using a
vast array of ML methods. CERN
is thus part of the community
that developpes ML!

After 20 years of using Machine
Learning it has now become very
widespread (NN, BDT, Random
Forest, etc.)

A prime example was the Kaggle
“HiggsML Challenge”. Most
popular challenge of its time!
(1785 teams, 6517 downloads,
35772 solutions, 136 forums)

XGBoost history
The many algorithms,

64

While Tianqi Chen did not win
himself, he provided a method
used by about half of the teams,
the second place among them!

For this, he got a special award
and XGBoost became instantly
known in the community.

XGBoost algorithm

65

The algorithms is documented on the arXiv: 1603.02754

XGBoost algorithm

66

The algorithms is an extension of the decision tree idea (tree boosting), using
regression trees with weighted quantiles and being “sparcity aware” (i.e.
knowing about lacking entries and low statistics areas of phase space).

Unlike decision trees, each regression tree contains a continuous score on each
leaf:

XGBoost
As it turns out, XGBoost is not only very performant but also very fast…

67

But this will of course only last for so long - new algorithms see the light of day
every week… day?

 — — — — — — — — — shortly after — — — — — — — — —

Meanwhile, LightGBM has seen the light of day, and it is even faster…
Which algorithm takes the crown: Light GBM vs XGBOOST?

Very good blog with introduction to tree based learning

https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/
https://www.analyticsvidhya.com/blog/2016/04/tree-based-algorithms-complete-tutorial-scratch-in-python/

Neural Network models

68

In machine learning and related fields, artificial neural networks (ANNs) are
computational models inspired by an animal's central nervous systems (in particular
the brain) which is capable of machine learning as well as pattern recognition.
Neural networks have been used to solve a wide variety of tasks that are hard to
solve using ordinary rule-based programming, including computer vision and
speech recognition.
 [Wikipedia, Introduction to Artificial Neural Network]

69

Neural Networks (NN)

A “Linear Network”
Imagine that we consider a “Linear Network”, and use the (simplest) architecture:
A single layer (linear) perceptron:

As can be see, this is simply a linear regression in multiple dimensions or the
(linear) Fisher Discriminant.

Well, then we could consider putting in
a hidden (linear) layer:

However, this doesn’t help anything
as combination of linear functions remain linear. It boils down to the Fisher again!

What we need is something non-linear in the function…
70

<latexit sha1_base64="1V+EAjU/L7ytn7yZRT21P5hxXgo=">AAACAnicbZDLSgMxFIYz9VbrbdSVuAkWoSKUGZHqRii6cVnBXqAdhkyaaUOTzJBkpGUobnwVNy4UcetTuPNtTNtZaOsPgY//nMPJ+YOYUaUd59vKLS2vrK7l1wsbm1vbO/buXkNFicSkjiMWyVaAFGFUkLqmmpFWLAniASPNYHAzqTcfiFQ0Evd6FBOPo56gIcVIG8u3D3RpeAKvIPIdeAo7KuEGKRz61LeLTtmZCi6Cm0ERZKr59lenG+GEE6ExQ0q1XSfWXoqkppiRcaGTKBIjPEA90jYoECfKS6cnjOGxcbowjKR5QsOp+3siRVypEQ9MJ0e6r+ZrE/O/WjvR4aWXUhEnmgg8WxQmDOoITvKAXSoJ1mxkAGFJzV8h7iOJsDapFUwI7vzJi9A4K7uVcuXuvFi9zuLIg0NwBErABRegCm5BDdQBBo/gGbyCN+vJerHerY9Za87KZvbBH1mfP7vSlR8=</latexit>

t(x) = a0 +
X

aixi

<latexit sha1_base64="AbBhrt7RuOypzSOOmvbznAxg+II=">AAACBnicbVDLSgNBEJz1GeNr1aMIg0FIEMKuSPQiBL14jGAekCzL7GQ2GTL7YKZXEpacvPgrXjwo4tVv8ObfOEn2oIkFDUVVN91dXiy4Asv6NpaWV1bX1nMb+c2t7Z1dc2+/oaJEUlankYhkyyOKCR6yOnAQrBVLRgJPsKY3uJn4zQcmFY/CexjFzAlIL+Q+pwS05JpHAMVhCV9hKBLXwqe4o5IAE5fjoctLrlmwytYUeJHYGSmgDDXX/Op0I5oELAQqiFJt24rBSYkETgUb5zuJYjGhA9JjbU1DEjDlpNM3xvhEK13sR1JXCHiq/p5ISaDUKPB0Z0Cgr+a9ifif107Av3RSHsYJsJDOFvmJwBDhSSa4yyWjIEaaECq5vhXTPpGEgk4ur0Ow519eJI2zsl0pV+7OC9XrLI4cOkTHqIhsdIGq6BbVUB1R9Iie0St6M56MF+Pd+Ji1LhnZzAH6A+PzB07WloA=</latexit>

tt(x) = t(a0 +
X

aixi)

Logistic Regression

71

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

<latexit sha1_base64="lLD00MUryhAtKOwiVoSFTH0Yq0o=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VoldZEpLoRim5cVrAPaGKYTCft0MmDmYmkhPyDG3/FjQtF3Lpx5984fSy0euDC4Zx7ufceN2JUSMP40nILi0vLK/nVwtr6xuaWvr3TEmHMMWnikIW84yJBGA1IU1LJSCfiBPkuI213eDX22/eECxoGt3IUEdtH/YB6FCOpJEc/FKWkDC+g5XGEUzNLTXgEyV1aKSWVxDHKx5agfR85SZY5etGoGhPAv8SckSKYoeHon1YvxLFPAokZEqJrGpG0U8QlxYxkBSsWJEJ4iPqkq2iAfCLsdPJTBg+U0oNeyFUFEk7UnxMp8oUY+a7q9JEciHlvLP7ndWPpndspDaJYkgBPF3kxgzKE44Bgj3KCJRspgjCn6laIB0ilI1WMBRWCOf/yX9I6qZq1au3mtFi/nMWRB3tgH5SACc5AHVyDBmgCDB7AE3gBr9qj9qy9ae/T1pw2m9kFv6B9fAOIvpwg</latexit>

s(x) =
1

1 + e�(x�x0)/�x

Logistic Regression
Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

The model expands
naturally with more
parameters:

72

<latexit sha1_base64="gQdCGy+QFCxLWYXTJEgFYnz3cDU=">AAACJXicbVDLSsNAFJ3UV62vqEs3g0VokdZEpLpQKLpxWcE+oK1hMp20QycPZiaSEPIzbvwVNy4sIrjyV5w+FrX1wIXDOfdy7z12wKiQhvGtZVZW19Y3spu5re2d3T19/6Ah/JBjUsc+83nLRoIw6pG6pJKRVsAJcm1Gmvbwbuw3nwkX1PceZRyQrov6HnUoRlJJln4tClER3sCOwxFOzDQx4SkkT0mpEJUiyyiedQTtu8iKYKkQl+I5JU5TS88bZWMCuEzMGcmDGWqWPur0fBy6xJOYISHaphHIboK4pJiRNNcJBQkQHqI+aSvqIZeIbjL5MoUnSulBx+eqPAkn6vxEglwhYtdWnS6SA7HojcX/vHYonatuQr0glMTD00VOyKD04Tgy2KOcYMliRRDmVN0K8QCpvKQKNqdCMBdfXiaN87JZKVceLvLV21kcWXAEjkEBmOASVME9qIE6wOAFvIEPMNJetXftU/uatma02cwh+APt5xf9dqKU</latexit>

s(x) =
1

1 + e�(x�x0)/�x�(y�y0)/�y

x (distance to boundary)
y (time to boundary)

x (distance to boundary)

y
(ti

m
e

to
 b

ou
nd

ar
y)

Neural Networks

73

t(x) = s
⇣
a0 +

X
aixi

⌘

t(x) = s
⇣
ai +

X
aihi(x)

⌘

hi(x) = s
⇣
wi0 +

X
wijxj

⌘

s(x) =
1

1 + e�a(x�x0)

Neural Networks combine the input
variables using a “activation” function
s(x) to assign, if the variable indicates
signal or background.

The simplest is a single layer perceptron:

This can be generalised to a multilayer
perceptron (shown right, 1 hidden layer):

Activation function can be any
“sigmoidal” function.

Neural Networks

74

t(x) = s
⇣
a0 +

X
aixi

⌘

t(x) = s
⇣
ai +

X
aihi(x)

⌘

hi(x) = s
⇣
wi0 +

X
wijxj

⌘

s(x) =
1

1 + e�a(x�x0)

Neural Networks combine the input
variables using a “activation” function
s(x) to assign, if the variable indicates
signal or background.

The simplest is a single layer perceptron:

This can be generalised to a multilayer
perceptron:

Activation function can be any
sigmoid function.

Activation Functions
There are many different activation functions, some of which are shown below.
They have different properties, and can be considered a HyperParameter.

75
For a more complete list, check: https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function

Normalising Inputs
While tree based learning is invariant to (transformations of) distributions,
Neural Networks are not. To avoid hard optimisation, vanishing/exploding
gradients, and differential learning rates, one should normalise the input:

76

Deep Neural Networks

Instead of having just one (or few)
hidden layers, many such layers are
introduced.
This gives the network a chance to
produce key features and use them
for many different specialised tasks.

77

Deep Neural Networks (DNN) are simply (much) extended NNs in terms of layers!

Currently, DNNs can have up to
millions of neurons and
connections, which compares to
about the brain of a worm. DropOut technique

…to mimimise overtraining

The role of NNs

78

The reason why NNs play such a central role is that they are versatile:
• Recurrent NNs (for time series)
• Convolutional NNs (for images)
• Adversarial NNs (for simulation)
• Graph NNs (for geometric data)
• etc.

Unlike trees, NNs typically make the “foundation”
of all the more advanced ML paradigms. However,
they are harder to optimise!
This is why trees a great for simpler tasks (i.e. data
that typically fits into an excel sheet [2110.01889]),
while NNs are typically used for the more advanced.

Have this in mind, when you attack problems with
ML - and like any other project or analysis, it is
typically good to get a “rough result” fast, and then
to refine it from there.

Preprocessing Data

79

When data is imperfect

80

So far, we have looked at “perfect” data, i.e. data without any flaws in it.
However, real world datasets are hardly ever “perfect”, but contains flaws that
makes preprocessing imperative.

Effects may be (non-exhaustive list):
• NaN-values and "Non-values" (i.e. -9999)
• Wild outliers (i.e. values far outside the typical range)
• Shifts in distributions (i.e. part of data having a different mean/width/etc.)
• Mixture of types (i.e. numerical and text, from something humans filled out)

It is also important to consider, if entries are missing…
1. Randomly (in which case there should be no bias from omitting) or
2. Following some pattern (in which case there could be problems!).

In case of NaN values, we might simply decide to drop the variable column or
entry row, requiring that all variables/entries have reasonable values.

Alternatively, we might insert “imputed” values instead, saving statistics.

NaN-values tend to correlate

81

It is often seen, that several variables have the same source, and thus their NaN
occurrence might be correlated with each other.

This can be tested by substituting 0’s for numerical values and 1’s for NaN
values. By considering the correlation matrix of these substitute 0/1 values, one
gets a pretty clear picture.

Typically, some entries are 100%
correlated, as the source of these
variables is shared.

Based on this information, one can
better decide how to deal with these
variables.

Conclusions

82

No matter what you plan to do with data, my first advice is always:

Print & Plot
This is your first assurance, that you even remotely know what the data
contains, and your first guard against nasty surprises.

Also, working with others (from know-nothings to domain experts) you will be
required to show the input, and assuring that it is valid and makes sense.

Remember to do so in all your ML work…

Dividing Data

83

How to “use” your data?

84

If you train you algorithm on all data, you will not recognise overtrain, nor what
the expected performance on new data will be. Thus we divide the data into:

Train Dataset
• Set of data used for learning (by the model), that is, to fit the parameters to

the machine learning model using stochastic gradient descent.
Valid Dataset
• Set of data used to provide an unbiased evaluation of intermediate models

fitted on the training dataset while tuning model parameters and
hyperparameters, and also for selecting input features.

Test Dataset
• Set of data used to provide an unbiased evaluation of a final model fitted

on the training dataset.

How to do the division?

85

You can of course do this yourself with your own code, but there are specially
prepared functions for the task:

Scikit-Learn method:
from sklearn.model_selection import train_test_split
X_train, X_rem, y_train, y_rem = train_test_split(X, y, train_size=0.8)
X_valid, X_test, y_valid, y_test = train_test_split(X_rem, y_rem, test_size=0.5)

Fast_ML method:
from fast_ml.model_development import train_valid_test_split
X_train, y_train, X_valid, y_valid, X_test, y_test =
train_valid_test_split(df, target = ‘?', train_size=0.8, valid_size=0.1, test_size=0.1)

There are a few important things to remember:
• Always do the data cleaning, selecting, weighting, etc. before splitting!
• If there is “more than enough” data, then use less than the total.
• If there is “a little too little” data, then use cross validation (next).

k-fold Cross Validation
In case your data set is not that large (and perhaps anyhow), one can train on
most of it, and then test on the remaining 1/k fraction.

This is then repeated for each fold… CPU-intensive, but easily parallelisable and
smart especially for small data samples.

86

Getting an uncertainty estimate

87

The k-fold cross validation (CV) does not only allow you to train on almost all
(1 - (1/k)) and test on all the data, but also has a two additional advantages:
• If you consider the performance (“Error” below) on each fold, then you can

also calculate the uncertainty on the performance.
• Since you can test on all data, the uncertainty on the loss estimate goes down.

Train, Validation & Test

88

Real overtraining

89

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Real overtraining

90

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Why does the red
curve reach zero?

From: Ian Goodfellow et al: “Deep Learning”

https://www.deeplearningbook.org/contents/ml.html

Real overtraining

91

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Why does the red
curve reach zero?

From: Ian Goodfellow et al: “Deep Learning”

https://www.deeplearningbook.org/contents/ml.html

Real overtraining

92

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

So how can we know, when to stop
increasing the complexity of our
algorithm?
(e.g. including more trees for BDTs)

Which method to use?
There is no good/simple answer to this, though people have tried, e.g.:

93Note: Old Scikit-Learn overview!

Which method to use?
There is no good/simple answer to this, though people have tried, e.g.:

94

Bonus Slides

95

The ML output

96

97

Typical ML Distribution
An ML score distribution from binary classification typically looks as follows:

Challenges:
• Hard to inspect visually
• Numerically challenging

98

Logit transformation
Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:

<latexit sha1_base64="Qxq0lgtNMkxLp+C/r0GB22r2BhI=">AAACInicbVBNSwMxEM3W7/pV9eglWAQ9WHZFqh6EohcPHhSsFrqlZNNsG5pNQjIrlmV/ixf/ihcPinoS/DGmtQe/Hgw83pthZl6kBbfg++9eYWJyanpmdq44v7C4tFxaWb2yKjWU1akSyjQiYpngktWBg2ANbRhJIsGuo/7J0L++YcZyJS9hoFkrIV3JY04JOKldOtTtLEwidZuFwOUAn6kuhzzHRzgU0hWLYQuHsSE003kW7Ogch4Z3e7DdLpX9ij8C/kuCMSmjMc7bpdewo2iaMAlUEGubga+hlREDnAqWF8PUMk1on3RZ01FJEmZb2ejFHG86pYNjZVxJwCP1+0RGEmsHSeQ6EwI9+9sbiv95zRTig1bGpU6BSfq1KE4FBoWHeeEON4yCGDhCqOHuVkx7xOUBLtWiCyH4/fJfcrVbCaqV6sVeuXY8jmMWraMNtIUCtI9q6BSdozqi6A49oCf07N17j96L9/bVWvDGM2voB7yPTyydpAs=</latexit>

pLogit = ln

✓
p

1� p

◆

99

Logit transformation
Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:

<latexit sha1_base64="MKDGcpTinQ+pV0M/B9pTqBF3nYU=">AAACVXicbVFNaxsxFNRu0yR1m8Ztj7mImmK7acxuKEkvhZBeeughhTg2eI3Rym9tEa0kpLdJzLL+kbmU/JNcCpU/Cm2SB0+MZt4gaZQaKRxG0V0QPtt4vrm1/aL28tXO6936m7cXTheWQ5drqW0/ZQ6kUNBFgRL6xgLLUwm99PLbQu9dgXVCq3OcGRjmbKJEJjhDT43q0ozKJE/1TZmgUDP6Q08EVhX9ShOpfEOGLZpklvHSNKsyPvArTayYTLH9aT5fWa+nYKGaz6lpemMrPjhMwDghtWp/NHSf/t2N6o2oEy2LPgbxGjTIus5G9dtkrHmRg0IumXODODI4LJlFwSVUtaRwYBi/ZBMYeKhYDm5YLlOp6AfPjGmmrW+FdMn+6yhZ7twsT/1kznDqHmoL8iltUGD2ZVgKZQoExVcHZYWkqOkiYjoWFjjKmQeMW+HvSvmU+QjRf0TNhxA/fPJjcHHYiY86Rz8/N05O13Fskz3ynrRITI7JCflOzkiXcHJL7oMgCINfwe9wI9xcjYbB2vOO/Ffh7h9MMLJr</latexit>

pLogit = ln

✓
p0

1� p0

◆
, where p0 = (1� 2✏) ⇤ p+ ✏

Numerically better:

When to apply ML?

100

When to use ML?

101

Using ML in an analysis is usually a (favorable) trade-off between:
• Higher statistics → Lower statistical error

 (better efficiency, sharper peaks… unless the cases are simple!)
• Larger data-MC differences → Higher systematic errors

 (more inputs, non-linearities… unless there are good control channels!)

So consider the table of uncertainties from a previous analysis (or estimate
these with a colleague), and ask yourself which of the two are dominant?

With this in mind, consider if it is worthwhile to apply Machine Learning.

Summary & Conclusions
Humans are great for problems of low dimensionality. Linear methods are
great for linear problems.

However, real world problems are often high dimensional and non-linear, i.e.
“complicated”. Here, Machine Learning (ML) can provide a solution, if good
(i.e. many) known cases are available for training.

Large amounts of data with NO known cases can be considered through
“unsupervised” learning, but this is hard and typically less powerful.

ML typically requires high statistics and is not very transparent, and thus
does not apply to simpler and/or low statistics cases.

In the end, simple solutions are often great. But if the case is not one such, ML
is a great way of “easily extracting” the information and boiling it down to a
single/few variable, which summarises the information available.

102

Links

103

Links to many ML resources:
https://www.nbi.dk/~petersen/Teaching/ML2025/MLlinks.html

Links to great online NN toy:
https://playground.tensorflow.org/

Link to super online CNN toy:
https://adamharley.com/nn_vis/cnn/2d.html

https://www.nbi.dk/~petersen/Teaching/ML2025/MLlinks.html
https://playground.tensorflow.org/
https://adamharley.com/nn_vis/cnn/2d.html

