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Stratification
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“Statistics is merely a quantisation of common sense”



Stratified sampling

Suppose you want to measure the average height of students at KU.

The simplest method is done by sampling N measurements, calculating the mean
u and standard deviation o, and quoting the result as p + o/sqrt(N) = u + oy



Stratified sampling

Suppose you want to measure the average height of students at KU.

The simplest method is done by sampling N measurements, calculating the mean
u and standard deviation o, and quoting the result as p + o/sqrt(N) = u + oy

However, one can do better!

1.0

L H=0, 0?02, m=—
U=0, 02=1.0, ==
0 U=0, 02=50, ]
- H=-2, 0?=0.5, == -
~~ 0.6
b.\
S 04

0.2

0.0




Stratified sampling

Suppose you want to measure the average height of students at KU.

The simplest method is done by sampling N measurements, calculating the mean
u and standard deviation o, and quoting the result as p + o/sqrt(N) = u + oy

Since it is known that students come in (at least) two types known to have
different height distributions, the above uncertainty can be reduced if we know
the fraction of each type (from other sources).

By separately determining the height of women and men, we avoid two sources of
uncertainty:

1. The enlarged standard deviation from mixing two samples.

2. The variation due to our random fraction sampling between types.

This can be particularly important, when you only have low statistics sampling.

And this is used in anything from costumer characterisation to political surveys.



How about variations?

If one sample turns out to have a (much) larger variation (i.e. std.) than the other,
then it pays to sample this group more.... proportionally to their std. [Barlow, p.95]
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Stratified Sampling

In stratified sampling, you try to get the best out of the small sample you make
your estimates from. The optimal way is to divide the sample (into strata), and
sample equally in each of these.

Stratified sampling

Population Strata Random selection Sample
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If the strata do not have the same standard deviation, then one should select
fractions of each strata proportionally to the Std.




Stratified Sampling

In stratified sampling, you try to get the best out of the small sample you make
your estimates from. The optimal way is to divide the sample (into strata), and
sample equally in each of these.

2 Types of Stratified Sampling

Population Strata Proportional Disproportional
........ stratified sampling Stratified Sampling
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Example of Stratification

Imagine that we wanted to estimate the average income of a large population,
where it is known (and this part is required knowledge!) that:

* 90% has a very standard income (p = 400k kr, o = 10k kr).

e 10% has a highly variable income (u = 500k kr, o = 100k kr).

As a single large population, they overall have p = 410k kr and o = 52.9k kr.
V= fiVi + foVa + fife(p, = 15)° (Barlowpod)

Now, we can take two strategies:
e Normal sampling: Simply sample 100 random persons. Result: o = £+ 5.29k kr.
e Stratified sampling: Use the above information and stratify the 100 samplings.
This can be done in two ways:
a: Proportional: Proportional to the known strata sizes.
This approach “kills” the f; f» Au2 term! Result: o = + 4.24k kr.
b: Disproportionally: Proportional to the fraction times standard deviation.
This approach further uses knowledge of the Std.
Now we sample 47/53 (most from small group). Result: o = + 3.61k kr.

V = f12vl/m1 4 f22V2/m2 (Barlow p.95)



An old prooft

More generally, one should avoid mixing “good” data with “poor” data. Without
dividing it, the poor tends to dilute the good.

Rather, do your analysis for the good and poor data separately - getting the full
power of both (but especially the good) - and combine these afterwards.
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. . 1 5 . o
2 2 212 212
Q“,,O — Qone = lel + 62D2 — ;(ELDL + €2D2 —+ 26162D1D2)

1
= 2[61(6 — EL)D% + 62(6 — 62)D% — 26162D1D2]

= (DY +D}-2DiDy) = “E(Di-Dy)’ 2 0. O (145)




An old prooft

More generally, one should avoid mixing “good” data with “poor” data. Without
dividing it, the poor tends to dilute the good.

Rather, do your analysis for the good and poor data separately - getting the full
power of both (but especially the good) - and combine these afterwards.

]\}'
. 1
One tagging category: D= N Z(l — 2(w);), (14.1)
2
1 1
Two tagging categories: D = — (1 —2(w) 9 = — (1 —2(w);).(14.2
Nl iEzi\;l < 2 z\: )

Obviously, ND = N1D; + N2Ds. The effective tagging efficiency () for each analysis is then:
w  [(ND +NoDo\2. 1.4 o

Note that the size of the effect is

proportional to the difference in

quality (here D).
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Bonus slides
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