
Applied Statistics 
Time series analysis

“Statistics is merely a quantisation of common sense”

Mathias Spliid Heltberg (NBI)
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Overview

By the end of the lecture, I hope you will know:
1) Why errors are defined by: min(χ2)+1
2) How to detrend data with polynomial fitting
3) What comes out of the (Fast) Fourier Transform and how 
to apply it
4) The existence of Autocorrelation, Time Warping and Time 
Embedding.



Applied Statistics 
Where do fit errors come from?

“Statistics is merely a quantisation of common sense”

Mathias Spliid Heltberg (NBI)

3



4

• Question: Why is it 
increased by 1 from 
the minimum?



The data
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Rate = λ = 1/τ
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•  Assume we are 
measuring the times for 
decay of a particle

•  We measure 1000 decays, 
and plot them as follows

•  We want to estimate the 
best parameters and its 
uncertainty



Uncertainty on parameters

6

• We have learned: errors 
are found at the y-value 
for min(χ2)+1

• This is if we do it “by 
hand” or when it comes 
from Minuit.

•  Why is this?

Data fitted using Minuit



To outline this derivation, we have go 
through the likelihood function. 
Remember this takes the shape:

And this we typically calculated in 
log space, giving the log likelihood.

Scanning through the likelihood space
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If we zoom in on the most likely value, we see 
that this is to a very good approximation a 
parabola.

Scanning through the likelihood space
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If we expand our expression for the log 
likelihood: 

To 2nd order, we obtain the following 
expression:

Note that “a” is the parameter we are varying, 
whereas “a_hat” denotes the most likely value.



The likelihood is gaussian
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So our log likelihood is a parabola, that 
means that our likelihood must be 
gaussian:
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Std of 
gaussian

Error from 
Minuit

We define the error as the std of the 
likelihood (gaussian) function -  and we 
note that is the second derivative of the 
log likelihood!



Finding the uncertainty on the likelihood
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We happily jump back into the log 
likelihood. With our new definition that 
sigma is the second derivative of the log 
likelihood, our expansion takes the form:

Value of τ [s]

lo
g 

lik
el

ih
oo

d

Std of 
gaussian

Error from 
Minuit

But hey! If we insert the value a_hat+σ 
we see directly:

This means that the uncertainty falls at 
the minimum of log likelihood + 1/2.



11

Relating this to χ2

Lets assume we have enough measurements so all datapoints become gaussian. Then 
the likelihood can be written as:

All probabilities follow a gaussian 
distribution

And taking the log likelihood.

Where we quickly identify:

We can drop the constant terms, since we are gonna use the derivatives of likelihood 
with respect to the parameter, and we see that:

So increasing the log likelihood by 1/2 give the error that has to mean that increasing 
χ2+1 also give the uncertainty. 

This shows that the uncertainty on a parameter is found at min(χ2)+1!

And remember:



Overview
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In this introductory lecture we will go through a series of fundamental 
tools when working with time series. The topics will include:

•Stationarity, de-trending and de-noising
•Signal decomposition and Fourier coefficients
•Phase space analysis

It is highly encouraged that you work on your own with the tools and try 
to apply them on some data you have at hand.



Stationarity
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A time series is defined to be strongly stationary if all points on average are 
independent of the time of measurement.

Typically we will use the definition of weakly stationary processes. Here the first 
moment of a signal should be constant and the variance non-infinite.

Stationarity is of fundamental importance to many of the methods we are going to 
apply.

Stationary Non-stationary mean Non-stationary variance
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De-trending algorithms
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Raw data

Polynomial fit

De-trended data
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Typically we would like a process to be stationary. This can be done by 
applying different kinds of filters. 

Of particular importance is the Polynomial filter. This you know from the 
command “np.polyfit” in the numpy library. 

This might not give you much information about what causes the non-
stationarity, but it allows you to extract the main features.
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Fraction of traces that can be 
classified as oscillatory based 

of Fourier analysis
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Many of you might think: With large computers why can’t I just 
plug everything into a fitting tool and obtain parameters?

Assume we have a data series and we want to estimate the 
oscillations:

Lets now assume that we know almost all parameters, except one 
with a factor 10 uncertainty:

If the uncertainty is in c1 If the uncertainty is in c5

De-trending algorithms
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Well, if we are interested in the oscillations, why not just apply the Fourier transform in the 
first place?

Since the data has a mean that is non-constant, and thereby not stationary, the underlying 
dynamics will dominate the Fourier spectrum.

Therefore we need to subtract this first - and this is done using a polynomial fit.

Finally we always test if the peak of the Fourier spectrum corresponds to the oscillations 
we are observing.
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De-trending algorithms



The optimal fit for any linear function
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The polynomial fit is special since it is the analytically best solution - no 
numerical fitting - this is smart when efficiently detrending!
Any linear function has an analytical optimal fit. Lets take the function:

With linear algebra we can write this in a compact form as:
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The optimal fit for any linear function
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With notation we can also compactly write the χ^2 with this notation:

The optimal fit is for a=a_hat and this must mean that the derivative of χ^2 is zero:
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Data
Exact fit
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Isolating a_hat give directly the optimal fit given the data and the covariance matrix



De-noising algorithms
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Another aspect of the time series analysis is the subtraction of stochastic noise. 

Many tools exist and for simplicity we will introduce one of them: the 
Salitzky-Golay filter. 

Here we simply take a given point, and then 
perform a polynomial filtering in +/- m data 
points.

This is done directly through our matrix notation

And as the implemented poly fit, where we 
typically choose a polynomium of order 3.

"it can be argued that the dawn of the computer-controlled 
analytical instrument can be traced to this article"

local fit

Don’t care 
about the fit
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Fourier analysis
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The majority of people have applied the Fourier analysis, but what is it actually?

To give direct insight, we assume to have a time series that will be periodic, we call 
this f(x). We try to fit it with a periodic function S(x). 

To find the best fit, we define an error function (ε(x) ) and calculate the least square 
fit (analytically)

Taking the derivative of M, with respect to each coefficient, we find:

Which are actually the Fourier coefficients. So it’s simply an analytical way to 
derive the best oscillatory fit.
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Fourier analysis
Just to finish the derivation we have:

Plugging the values in we have:

And we end with:

Since:

Since:

Simple an analytical Least-squares result!
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Output of FFT
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Output of FFT

Mean

Similar since we have a 
real signal

If length is even: Nyquist 
frequency (i.e. fastest)
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Output of FFT
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Output of FFT



Fourier analysis - example
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From this inspiration, we can directly apply the Fourier analysis - using FFT 
and iFFT.

Is we have a dataset of say 100 cells, we can perform an FFT analysis on 
each separate dataset - NOT their means.



Fourier analysis - example
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From this inspiration, we can directly apply the Fourier analysis - using FFT 
and iFFT.

Is we have a dataset of say 100 cells, we can perform an FFT analysis on 
each separate dataset - NOT their means.
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Continous Wavelet transform
Sometimes we are not interested 
in a long-term oscillation - but 
rather small transient signals.

Here the continuous wavelet 
transform (CWT) is a natural 
development of the Fourier 
analysis, that basically estimates 
the coefficients of small wave 
packets. 

This was of great importance, 
when the LIGO discovered 
gravitational waves!
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Some advanced tools



Autocorrelation
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Lets say we want to compute the periodicity of some signal. 

We can directly see at which points data is correlated, by calculating the correlation coefficient 
at future time points.

By doing this and increasing the time addition we evaluate correlation in, we obtain an 
autocorrelation.

We can do this across different conditions and compare the resulting periodicity.



Poincare section
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A Poincare section is has dimension n-1, where n is the dimensionality of the data. 

If for instance the data is in a 3 dimensional phase space, the Poincare section is a plane that is 
situated at some location (after your choice) where the trajectory passes through.

In this way, one can study recurrent dynamics, and investigate this in a discrete time series. 

This can for instance be applied when studying the motion between two limit cycles, where the 
transitions might occur in the middle of a rotation.



Time embedding
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Suppose we have a time series, but we would like to obtain information about the 
geometry of the phase space.

Then we can apply a technique known as time embedding. Here we basically take a time 
series from x(1:end-L+1) and x(L:end) - and this can be extended to any dimension.

Building on a result known as “Taken’s theorem”, the embedded attractor will have the 
same properties as the underlying network in many dimensions.

Choose this time lag
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Phase space analysis

x x

y2y1

y2y1x

Sometimes a lot can be gained of insight by considering the actual phase space instead of the 
times series by itself

The phase space reveals the structure of the interplay of the studies variables. For instance a 
natural question would be to ask: Do these create a closed cycle?
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Using Angular Variables 
to disentangle 

31
H → ZZ* → eeee?

Fitting with a model
Occasionally, the model is not a function, but a more advanced model. One 
example could be the SEIR-model for epidemics, here with 4 E and I stages:

S λEβji
E1 E2 E3 E4 I1 I2 I3 I4 RλIλE λE λE λI λI λI

Exposed phase: Infected phase:
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Using Angular Variables 
to disentangle 

36
H → ZZ* → eeee?

Fitting with a model
Occasionally, the model is not a function, but a more advanced model. One 
example could be the SEIR-model for epidemics, here with 4 E and I stages:

An example outbreak of Covid-19 in Denmark happened in Aarhus early 
August 2020:

The number of tests
and positives are given,
from which a “scaled”
number of infected can
be calculated and fitted.

The fit is exactly with
the SEIR model above,
fixing most parameters.

S λEβji
E1 E2 E3 E4 I1 I2 I3 I4 RλIλE λE λE λI λI λI

Exposed phase: Infected phase:



Challenge: Chaotic dynamics
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When we look for dynamics, we typically investigate the possibility of oscillations. 

However more complex dynamics exist that is related to the features of 
oscillations.

In particular we want to mention the possibility of chaotic dynamics. This is 
defined by the fact that two trajectories, starting infinitely close to each other 
diverge in time.

This is difficult to access, when we cannot perform two experiments starting from 
exactly same conditions - however methods exist to estimate this.
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Estimating the Lyapunov 
exponent and dimension

In the field of non-linear mathematics and physics of complex systems, the study of dynamics 
has been a major field in the past century

First in mathematical experiments and later in real experiments, numbers such as Lyapunov 
exponent and attractor dimension is estimated based on fitting tools - here always in log-space.
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A very typical problem is the comparing of two data series that definitely seem similar

However comparing their similarities directly will not give any good result.

Instead we compare them using Dynamics Time Warping, where we consider the 
distances between the value of the points.

Dynamics Time Warping (DTW)
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Cost landscape

Dynamics Time Warping (DTW)
Based on the landscape of distances, we now create the so called “accumulated 
cost” landscape. 

Here, for each new step, the value is the minimal of the three “previous” values 
plus the actual cost.

When we now move backwards - we find the path of minimal cost!
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Dynamics Time Warping (DTW)
By application of the DTW, we can thereby construct aligned sequences in the time 
variable. 

This could potentially also lead to the application of more standard fitting tools.



Summing up
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In this brief lecture we have covered some fundamental elements in data analysis of time series:
1) Investigate stationarity - possibly append polynomial fitting

2) Investigate oscillatory components - apply Fourier analysis

3) Consider if de-noising of data could strengthen the analysis

4) When comparing oscillatory signals - align the signals using dynamic time warping

5) Investigate the phase space of the signal using time embedding
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Today’s exercise
Extract the frequency and amplitude of these oscillators…
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Note: See how much you can enhance sig_trace before the fit stops working!!

Today’s exercise
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Today’s exercise

Potential candidate for fitting:

Using Fourier analysis

frequency
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Gaussian fit
Resonance fit

Resonance fit is 
good around the 

peak


