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Overview

By the end of the lecture, I hope you will know:
1) Why errors are defined by: min(x2)+1
2) How to detrend data with polynomial fitting

3) What comes out of the (Fast) Fourier Transform and how
to apply it

4) The existence of Autocorrelation, Time Warping and Time
Embedding.



Applied Statistics

Where do fit errors come from?
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Example of Chi-Square

Uncertainties need not always be symmetric (though that is usually better!)

. " | » Question: Why is it | '
: increased by 1 from \x Va
L. e — " the minimum? 3 { . *P****"’ l B

The uncertainty on a parameter is found where the Chi2
has increased by 1 from the minimum.
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The data

e Assume we are Rate = A =1/1
. < —>
measuring the times for

decay of a particle

* We measure 1000 decays,
and plot them as follows 200-

e We want to estimate the 150-
best parameters and its
uncertainty

Counts




Uncertainty on parameters

e We have learned: errors
are found at the y-value
for min(y2)+1

e This is if we do it “by
hand” or when it comes
from Minuit.

e Why is this?

Data fitted using Minuit
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Scanning through the likelihood space

To outline this derivation, we have go

through the likelihood function.
Remember this takes the shape:

L(a) = P(X1|a) - ... - P(Xn|a) = H P(X;|a)

And this we typically calculated in

log space, giving the log likelihood.

l(a) = —In(L(a)) = —In(P(X1|a)) — ... — In(P(X,|a)) Zln

(X;|a))

log likelihood
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Scanning through the likelihood space

11111

If we zoom in on the most likely value, we see
that this is to a very good approximation a
parabola.

00000

11111

11111

00000

00000

log likelihood

[f we expand our expression for the log
likelihood:

0.6 d/ 1fo\1é 1.4 16 18
2
1a) = @) + (@ — ) D)o+ La—ap 1O o / Value of TN

To 2nd order, we obtain the following
expression: S
d?l 'Jg
o)~ 1a) + (o~ LD, E
50
=2
Note that “a” is the parameter we are varying,
whereas “a_hat” denotes the most likely value. Value of 1 [s]



The likelihood is gaussian

So our log likelihood is a parabola, that
means that our likelihood must be

gausslan:
. ] Std of Error from
L(a) = e 1@ » e~ 1@ g=3(a-0)" T lama _ =308 Jama | oy 0o gaussian Minuit
S R
<
g
We define the error as the std of the =
likelihood (gaussian) function - and we S
note that is the second derivative of the Value of t [s]

log likelihood!




Finding the uncertainty on the likelihood

We happily jump back into the log
likelihood. With our new definition that
sigma is the second derivative of the log

likelihood, our expansion takes the form: "\ o ., . Error from
,_8 973.5 - o ussian E Minuit
°l(a a—a)? Q 973.0 + i
@) % 1@) + a-ap T D), | — |1 =i+ 2| S \ ; /
':GM: 972.5 A \/
b bD 972.0 A
But hey! If we insert the value a_hat+o 2

we see directly:

0.92 0.94 0.96 0.98 1.00 1.02

Value of T [s]

(6+ 0 —a)?

. . 1
la+0) =1(a) + 35—

= 1(a) +

This means that the uncertainty falls at
the minimum of log likelihood + 1/2.



Relating this to x?2

Lets assume we have enough measurements so all datapoints become gaussian. Then

the likelihood can be written as:

1 (X;—f(7))?
2

=1
21;[1 \/27ra z

All probabilities follow a gaussian
distribution

And taking the log likelihood.

—In(L(7))

Where we quickly identify:

We can drop the constant terms, since we are gonna use the derivatives of likelihood

with respect to the parameter, and we see that:

1
—In(L(1)) = §X2 And remember:

l(&:l:a)zl(&)—}—%(dia_&) =1(a) +

o2

So increasing the log likelihood by 1/2 give the error that has to mean that increasing

x2+1 also give the uncertainty.

This shows that the uncertainty on a parameter is found at min(x2)+1!
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Overview

In this introductory lecture we will go through a series of fundamental
tools when working with time series. The topics will include:

e Stationarity, de-trending and de-noising
® Signal decomposition and Fourier coefficients
® Phase space analysis

[t is highly encouraged that you work on your own with the tools and try
to apply them on some data you have at hand.
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Some measure

Stationarity

A time series is defined to be strongly stationary if all points on average are
independent of the time of measurement.

Typically we will use the definition of weakly stationary processes. Here the first
moment of a signal should be constant and the variance non-infinite.

Stationarity is of fundamental importance to many of the methods we are going to

apply.
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De-trending algorithms

Typically we would like a process to be stationary. This can be done by
applying different kinds of filters.

Of particular importance is the Polynomial filter. This you know from the
command “np.polyfit” in the numpy library.

This might not give you much information about what causes the non-
stationarity, but it allows you to extract the main features.

Fraction of cells having largest oscillatory

Raw data component smaller than 10 hours
200 1
De-trended data
2 150 Polynomial fit | 0.8}
] .
= 100} = 0.6
© 3]
% 20 0.4 Fraction of traces that can be
O classified as oscillatory based
O 0.2} of Fourier analysis
-50 . - - - 0 ‘ A
0 50 100 150 200 0 5 10
Time [h] Polynomial degree
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De-trending algorithms

Many of you might think: With large computers why can’t I just

plug everything into a fitting tool and obtain parameters? 18] ¢ b .
16 + +
Assume we have a data series and we want to estimate the . ; y
illations:
oscillations . ; ; b + +++
f(SE) =cC1 + C2T + (33:132 4 C4COS(C5.’L') § ¢ + + +
' ' | ¢ H
a- ¢
6 + + + +
Lets now assume that we know almost all parameters, except one - 5 o el - -
with a factor 10 uncertainty:
If the uncertainty is in cl If the uncertainty is in ¢5

Concenctration
= = = = [
o0 o N ES (o)} (o]
A ! ) )
-
Concenctration
= [ — —
o N ()] o]

o
L

0 5 10 15 20 25 30
Time (h)
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Concenctration

De-trending algorithms

Well, if we are interested in the oscillations, why not just apply the Fourier transform in the

first place?

Since the data has a mean that is non-constant, and thereby not stationary, the underlying
dynamics will dominate the Fourier spectrum.

Therefore we need to subtract this first - and this is done using a polynomial fit.

Finally we always test if the peak of the Fourier spectrum corresponds to the oscillations
we are observing.

Power spectrum
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The optimal fit for any linear function

The polynomial fit is special since it is the analytically best solution - no
numerical fitting - this is smart when efficiently detrending!

Any linear function has an analytical optimal fit. Lets take the function:

f(z|@) = a1 + asx + agsin(x) + aze™

With linear algebra we can write this in a compact form as:

1 z; sin(z) e_“"l\ ay
—— ~ 1 zo sin(zp) e %2 ao
f(z]la) = Ca with | C=]. . : : i =

\1 az.n sin(xn) e_."’n}

y-value [unit]

—— Data

0 2 4 6 8 10

x-value [unit]



The optimal fit for any linear function

With notation we can also compactly write the x2 with this notation:

o2 o

The optimal fit is for a=a_hat and this must mean that the derivative of x2 is zero:

2 ~ ~
X" o = —CTVY(§— Ca) + (§ — CA)TV~(~C) =0

dg 'i=i

[solating a_hat give directly the optimal fit given the data and the covariance matrix

= a=(CTv o)y 'cTv-ly

=,
C
=}
(b}
2 1
©
>
> O
—— Data
-1 - — Exact fit

6 8 10

x-value [unit]

0 2



De-noising algorithms

Another aspect of the time series analysis is the subtraction of stochastic noise.

Many tools exist and for simplicity we will introduce one of them: the
Salitzky-Golay filter.

"it can be argued that the dawn of the computer-controlled
analytical instrument can be traced to this article"

/ local fit /
/
l /

=
=
. . . ../ Don’ /
Here we simply take a given point, and then % abgﬂtttfwaer?it
. . . . = | v
perform a polynomial filtering in +/- m data P
points. T
Time [AU]
This is done directly through our matrix notation ol . . . _
iy | Wl ‘.‘M
And as the implemented poly fit, where we ) u”w ” f ‘ f ” ‘
. : < | I Lo
typically choose a polynomium of order 3. o © | o | g } - ha
C>U P ‘ ‘W‘ | ’ |
[
| i
oL . .
o 5 10 15 20
Time [AU]
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Fourier analysis

The majority of people have applied the Fourier analysis, but what is it actually?

To give direct insight, we assume to have a time series that will be periodic, we call
this f(x). We try to fit it with a periodic function S(x).

Sp(x) = Ag + Aicos(x) + ... + Aycos(nzx) + Bysin(x) + ... + B, sin(nz)

To find the best fit, we define an error function (e(x) ) and calculate the least square
fit (analytically)

L[ 2
f(z) = Sn(z) + () M = or /_7r e(x)*dx

Taking the derivative of M, with respect to each coefficient, we find:

OM 1T oM L1 |
oar =0 A= [ f@cos(ha)d 55, = 0= Bi=1 [ J@sin(kayio

Which are actually the Fourier coefficients. So it’s simply an analytical way to
derive the best oscillatory fit.
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Fourier analvsis

Just to finish the ¢

Plugging the valy

fz) = A

And we end with:

10_ @ eData || Y /
— curve fit

- sin(kx)

1T + 6—z':c)

Which

Simple an analytical Least-squares result!

Since e'** = % (cos(kz) FTSM(KZ)] We IMUSt have: Ty, = 3(Ax — IBK)

v(x)sin(y) = cos(x — y)
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Output of FFT

We generate a signal

X = np.linspace(0,4*np.pi,40)
y = 1 + 1xnp.cos(2%x)+2*knp.sin(1kx)
plt.plot(x,y); plt.show()




Output of FFT

Lets run the (Fast Fourier Transform: Interpret the output of the FFT.
_ # Define the length of the signal
X = np.fft.fft(y) _ . T =
print('length', len(X)) e ey U= L
plt.plot(X.real) .
e e e e
length 40 print('Mean value',a_0)
# Compute a_n and b_n
40 - < Mean a_n = 2 x np.real(X[1:N//2]) / N
b_n = -2 % np.imag(X[1:N//2]) / N
Similar since we have a Mean value (1.0250000000000001+07)
30 A real signal

/A\/A\

20 A
If length is even: Nyquist
o frequency (i.e. fastest)
0 -
| — —




Output of FFT

Reconstruct the signal

# Now we make the reconstricted signal
t = np.linspace(@, T, N, endpoint=False)

# Start with the mean
reconstructed_signal = a_@*np.ones(len(t))

# Add the a_n and b_n terms
for n in range(1, N//2):
reconstructed_signal += a_n[n-1]*np.cos(2*np.pixn*t/T) + b_n[n-1]*np.sin(2*xnp.pi*n*xt/T)

# For even N, there is a Nyquist term (not critical to fit in many cases)

if N % 2 == 0:
a_N2 = np.real(X[N//2]) / N
reconstructed_signal += a_N2 * np.cos(np.pi * t)

f N\ \ 4 3 /’ h \ / - ‘\
" \\ / \\ " \\ -, ’ \
2 - \ / '~ i
\‘\“ ', \‘ ;'
\ | |
‘ .' “. !
\ f \ !
1 J | |
1 7 ‘.’ ; ‘;‘ !
\ f \ "
\ | \ |
1 ' “ !
\ . ‘ |
- 1 !
0 \ : ‘3‘ !
| | | |
\ | \ |
\ | | |
\ ; “‘ /
\ ' \ |
-1 1 \ | \ !
\ | \ f
\ f ‘ |
\ / \ f
—— original signal \ J
-2 - Reconstructed signal vV
8 10 12

-

0 2

- 6
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Output of FFT

Of course this is similar to:

Y_ifft

= np.fft.ifft(X)

plt.plot(x,y, label="'original signal')
plt.plot(x,Y_ifft, '——y',label="ifft")
plt.legend(loc="1lower left')
plt.show()

— original signal \ \
ifft N
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Fourier analysis - example

From this inspiration, we can directly apply the Fourier analysis - using FFT

and iFFT.

Is we have a dataset of say 100 cells, we can perform an FFT analysis on

each separate dataset - NOT their means.

Single cell traces

mitosis
Y Y
150 150
= 100 ; 100
o 1
— 50 50
R WA (YT
0 0
Q 20 40 60
m o
D 150} 150
100} 100
50| | 50
ol 0

0 20 40 60

Time (h)

p53 level (a.u.)

Summary statistics of all traces
mitosis
v

0 20 40 60
Time from mitosis (h)
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Fourier analysis - example

From this inspiration, we can directly apply the Fourier analysis - using FFT
and iFFT.

Is we have a dataset of say 100 cells, we can perform an FFT analysis on
each separate dataset - NOT their means.

20 ' ' — Experimental
® All observations 60} — Sinusoidal simulation
g 15 t o Individual trace . ~ 5ol
C maximum 3
3 : & 40
a 4 S
()] . v
o i @ 30
S 0
a a 20
10+t
0
0 02 04 06 0.8 1.0 1.2 1.4 0 10 2_0 30 40
Frequency (1/h) Time (h)
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Continous Wavelet transform

Sometimes we are not interested
in a long-term oscillation - but
rather small transient signals.

Here the continuous wavelet
transform (CWT) is a natural
development of the Fourier
analysis, that basically estimates
the coefficients of small wave
packets.

This was of great importance,
when the LIGO discovered
gravitational waves!

(1) —

Frequency (Hz)

Strain (1072%)

512
256
128
64
32

1.0
0.5
0.0
-0.5
-1.0

T(l) /000 [: a—lszw(a,b) exp(it

271';

Hanford, Washington (H1)

0.30 0.35
Time (s)

4

0.40

0.45

Hanford, Washington (H1)

a

b) db da

fs(x)*w(-’fjé) dx

Livingston, Louisiana (L1)

0.30

0.35 0.40
Time (s)

0.45

Livingston, Louisiana (L1)

O N b~ O @

I I

- H1 observed
|

H =— L1 observed

H1 observed
1

(shifted, inverted)
1

0.30 0.35
Time (s)

0.40

|
0.45

0.30

0.35
Time (s)

|
0.40

|
0.45

Normalized amplitude
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Some advanced tools
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-4 1

Autocorrelation

Lets say we want to compute the periodicity of some signal.

We can directly see at which points data is correlated, by calculating the correlation coefficient

at future time points.

(Xt — 1) (Xirr — )

By doing this and increasing the time addition we evaluate correlation in, we obtain an

autocorrelation.

We can do this across different conditions and compare the resulting periodicity.

T T T T T T
0 20 40 60 80 100

T T T T T T
0 20 40 60 80 100

C

p53 FC

autocorrelation zone 2

1:1 oscillator 1:2 oscillator
Tobs : Text=9h:9h Tobs : Text=4.5h:9h
iy , 4'1
¢ | | I
4 A ) "‘\ J 4 ’ | "\
| | ool \ | \l I ﬂ“‘ ‘H
b oall 7l WA “‘e‘ | i 0
VRTAVAAYLAS W PR
2 | ."‘,‘ SO ‘.,‘J [V 2 |‘H [N ‘\ \“ “‘ |/ ‘ | “U“
A : AT LA
o LU o L[]
0 20 40 60 80 0 20 40 60 80
time (h) time (h)
11 1y
T4=T, ‘\
L x‘ T1=Text
0.5 05/ |
\“ To=Text/2
0 oLt 0 ]
0.5 \]-0.5

0 2 4 6 8 1012

time (h)

0 2 4 6 8 1012

time (h)
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Poincare section

A Poincare section is has dimension n-1, where n is the dimensionality of the data.

If for instance the data is in a 3 dimensional phase space, the Poincare section is a plane that is
situated at some location (after your choice) where the trajectory passes through.

In this way, one can study recurrent dynamics, and investigate this in a discrete time series.

This can for instance be applied when studying the motion between two limit cycles, where the
transitions might occur in the middle of a rotation.

x10* 250
12 - Poincare section
s 200 }
10 -
o4 |\ /| =3 .
8 é 150
4 | s '8 e 0\ SN (N
64 |\t T = o | B TRARLIUL] AUBERUA MGLAG A UG TRIRERREE B 00 T LT LT 2 e - - e N
VT < 100 } \
5 X a8
FY Poincare Section
3 d N Tt 4 i
2. 2
0
1000 4
2000 1 %10
3000 4000 0

5000 0 y 0 1000 2000 3000 4000

Oscillation number
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Time embedding

Suppose we have a time series, but we would like to obtain information about the
geometry of the phase space.

Then we can apply a technique known as time embedding. Here we basically take a time
series from x(1:end-L+1) and x(L:end) - and this can be extended to any dimension.

Building on a result known as “Taken’s theorem”, the embedded attractor will have the
same properties as the underlying network in many dimensions.

Choose this time lag

0.4,

é | —T/2 - 3m1/2 1'0"\
S L/ \ARYANNANAAA 5 o5
zZ 02— - 3
T . 240 S g0l
™ ime [min] =
+ 0.2 S
< S -0.5+
3 < v v -
% 02l _ | 0 10 20 30 40 50

Nuc. RelA(t)
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10 4

-10

Phase space analysis

Sometimes a lot can be gained of insight by considering the actual phase space instead of the
times series by itself

The phase space reveals the structure of the interplay of the studies variables. For instance a
natural question would be to ask: Do these create a closed cycle?

\
f

y1 -

{ ;\ W
’V,\H 1

\

|

‘J

0.0

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
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Fitting with a model

Occasionally, the model is not a function, but a more advanced model. One
example could be the SEIR-model for epidemics, here with 4 E and I stages:

Infected phase:




Fitting with a model

Occasionally, the model is not a function, but a more advanced model. One
example could be the SEIR-model for epidemics, here with 4 E and I stages:

Infected phase:

An example outbreak of Covid-19 in Denmark happened in Aarhus early

August 2020:

The number of tests
and positives are given,
from which a “scaled”
number of infected can
be calculated and fitted.

The fit is exactly with
the SEIR model above,

fixing most parameters.

Nye positive pr. dag (skaleret)

120 A

100 A

80 1

60 1

40 A

20 A

—— Fit med SEIR Model - uden tiltag
—— Fit med SEIR Model - med tiltag
}  Nye positive (skaleret til 3000 tests/day)

Public reaction
(1. Aug.)

Aarhus

Central lockdown

(7. Aug.)

130 140 150 160 170

Dag (1. Marts er dag 0)




Challenge: Chaotic dynamics

When we look for dynamics, we typically investigate the possibility of oscillations.

However more complex dynamics exist that is related to the features of
oscillations.

In particular we want to mention the possibility of chaotic dynamics. This is
defined by the fact that two trajectories, starting infinitely close to each other
diverge in time.

This is difficult to access, when we cannot perform two experiments starting from
exactly same conditions - however methods exist to estimate this.

Original dataseries Time embedding, cleaning
- as long as possible and smoothening

initial conditions = |
- — i e o '
R - S| Postive Lyapunov |
| 4 \S | - Exponent
: : |l | : '. . : l ’ .

Chaotic measures

Time [AU]

= Converging|
__dimension -

log(r)

_..#ﬁf;ﬁobfoiég'y an4

_ savealadian
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Estimating the Lyapunov
exponent and dimension

In the field of non-linear mathematics and physics of complex systems, the study of dynamics
has been a major field in the past century

First in mathematical experiments and later in real experiments, numbers such as Lyapunov
exponent and attractor dimension is estimated based on fitting tools - here always in log-space.

Correlation Dimension
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[ | | _ |
10 | 1ol l- SETTIEIR] ,‘
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" magnitude of separation of nearby Lorenz trajectories
10° ; - . . =
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Dynamics Time Warping (DTW)

A very typical problem is the comparing of two data series that definitely seem similar
However comparing their similarities directly will not give any good result.

Instead we compare them using Dynamics Time Warping, where we consider the
distances between the value of the points.

O
O

38



Dynamics Time Warping (DTW)

Based on the landscape of distances, we now create the so called “accumulated
cost” landscape.

Here, for each new step, the value is the minimal of the three “previous” values
plus the actual cost.

When we now move backwards - we find the path of minimal cost!

for i :=1 ton 5
for j (=1 tom X
cost := d(s[i]l, tl[j]) 10
DTW[i, j] := cost + minimum(DTW[i-1, j 1, // insertion
DTW[i , j-1], // deletion 10\
DTW[i-1, j-11) // match
a) o —— b) Cost landscape
: 1 84 3 9
©: 1 NN 2|5]|7|7 13 — 3| + min{2,3,4} = 2 >
2 1|1 8 3|4 }/‘_‘
s [3|3ll 2|24 4 c)
3 |s|spml2]2]4 g e
« (575 2 [WIE FEPa R i
1 8|8l4141| 3 1 2 3 3 4 |




Dynamics Time Warping (DTW)

By application of the DTW, we can thereby construct aligned sequences in the time
variable.

This could potentially also lead to the application of more standard fitting tools.

\w,“M’MMWJ\\ Ty - oA
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Summing up

In this brief lecture we have covered some fundamental elements in data analysis of time series:
1) Investigate stationarity - possibly append polynomial fitting

2) Investigate oscillatory components - apply Fourier analysis
3) Consider if de-noising of data could strengthen the analysis
4) When comparing oscillatory signals - align the signals using dynamic time warping

5) Investigate the phase space of the signal using time embedding
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Today’s exercise

Extract the frequency and amplitude of these oscillators...

y-value [AU]

2.0

1.5 4

1.0 A

0.5 1

A deterministic oscillator

T T T T T T
0 20 40 60 80 100

time [AU]

An oscillator with experimental noise

y-value [AU]
o

-2 4

0 20 40 60 80 100
time [AU]

y-value [AU]

-3 4

A stochastic oscillator - with experimental noise

20 40 60 80 100
time [AU]

A stochastic oscillator - with background and experimental noisq

6 —— data
—— polynomial fit - degree 20
4

y-value [AU]

0 20 40 60 80 100

time [AU]
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Today’s exercise

IIIIII

IIIIII

time [AU]




Today’s exercise

Using Fourier analysis

Potential candidate for fitting:

_ Fmax/m
2
\/(w%—w?)2 + %%wQ

from Q-factor:

10° 5 Gaussian fit
== Resonance fit
I
1071 :
o | '.
3 I\ |
o 4
Bl TN
| Resonance fit is
good around the
1073 §
] peak
(') 5' 1'0 1'5 2'0 2'5 3'0

frequency
3.1224105716447514 \pm 0.0663818687963087
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