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Preface

�

The homepage for these lectures is
http://www.nbi.dk/ �phansen/fys716

�

For proofs, examples and more subjects, see Glen
Cowan: Statistical data analysis, Oxford Science
Publications

�

or – for an overview of everything, see
http://pdg.lbl.gov/

�

Numerical fortran programs are from
http:://cernlib.web.cern.ch/cernlib/ and
C++ programs are from CLHEP:
http:://wwwasd.web.cern.ch/CLHEP/.

�

Other physics software links are found in
http:://www.hep.net/resources/software.html.



What is probability?

Kolmogorov formulated the probability axioms in 1933.
Consider a set, S, called “sample space”, e.g. of all possible
outcomes of a measurement. To each subset A of S, assign a
real number P

�

A

�

, defined by the axioms:

�

For all A, P

�

A

� �

0.

�

For disjoint subsets A and B: P

�

A � B

�

� P

�

A

� � P

�

B

�

.

�

For any S, P

�

S
�

� 1.



Frequentistic probability

�

In the frequentistic view, the probability of some
collection of events is

the relative frequency of its occurence
in a very large number of experiments, repeated

under exactly the same circumstances
.

�

This is not always feasible, but in High Energy Physics
you have a chance.

�

However, you can only talk about the likelihood,
P

�

data

�

theory
�

, that a given hypothesis will yield some
measured data.
You can not talk about P

�

theory

�

data

�

– since there is no
way to determine this by repeating. The theory is either
never or always true!



Bayesian probability

�

In the Bayseian view, probability is the degree of belief
that a hypothesis will hold water in the future. We
imagine to have an exclusive and exhaustive set of
alternative hypothesis Hi available for explaining some
measured data. In this picture, the probabilty for a
given hypothesis can be assigned via Bayes’ Theorem:

P

�

Hi
�

data
�

� P

�

data

�

Hi

�

� P0

�

Hi

�

∑j P

�

data

�

Hj

�

� P0

�

Hj

�

where P0
�

Hi

�

is the prior probability for hypothesis i, as
obtained from the – admittedly subjective – knowledge
prior to the measurement.



Probability density function

�

The probability density function (p.d.f.) is defined by
requiring the probability of finding a continous random
variable x in the interval [x,x+dx] to be f

�

x, θ

�

dx, where
θ are possible fixed parameters.

�

The p.d.f. must be normalized to unit area:

∞
� ∞

f

�

x, θ

�

dx � 1

.

�

The cumulative distribution is F

�

x

�

�

� x

� ∞ f

�

x

�

dx
(or F

�

x
�

�

∑xi

� x P

�

xi

�

for discrete random variables).



Joint p.d.f.

�

For two random variables, the joint p.d.f., f

�

x, y

�

, is
normalized to unit volume on the xy plane.

�

Integrating over y, we obtain the marginal p.d.f., fx

�

x

�

.

�

The two variables are independent if
f

�

x, y

�

� fx

�

x

�

fy

�

y

�

,
so the knowledge of one variable does not change the
p.d.f. of the other.



p.d.f. of functions of random variables

�

A function a

�

x

�

of a random variable with p.d.f. f

�

x

�

has the p.d.f.:

g

�

a

�

� f

�

x
�

a
� �

��
��
��
�

dx
da

��
��
��
�

�

Exercise: F

�

x

�

is always uniformly distributed. Show it.

�

If ā are several functions of several random variables:

g

�

ā

�

� f

�

x̄

� �

J

�

,

where
�

J
�

is the Jacobian determinant of δxi
δaj

.



Moments

�

For any function, g

�

x

�

, of a random variable with p.d.f.
f

�

x

�

, the expectation value is:

E

�

g

�

x

� �

�

∞

� ∞

g
�

x

�

f

�

x

�

dx

�

A p.d.f. may be characterized by its central moments:

mn

�

∞

� ∞

xn f

�

x

�

dx



Mean and variance

�

Some moments have English names, such as the mean:

µ �

∞

� ∞

x f
�

x
�

dx � E

�

x

�

The variance, σ2, is defined as:

σ2 � E

� �

x � µ

� 2 �

� E

�

x2 �

� µ2

�

The mean, µ, is often approximated by the sample
mean: 1

N ∑ xi, and the variance by the sample variance:
1
N ∑

�

xi � µ

� 2.



Correlations

The covariance of two random variables x and y with joint
p.d.f. f

�

x, y

�

is defined:

Vxy

� E

� �

x � µx

� �

y � µy
� �

� E

�

xy

�

� µxµy

�

∞

� ∞

∞

� ∞

xy f

�

x, y

�

dxdy � µxµy

More generally, for any two functions of n random variables
x̄, the covariance matrix is given by:

Vab

� E

� �

a � µa

� �

b � µb

� �

� E

�

ab

�

� µaµb

�

∞

� ∞

� � �

∞

� ∞

a

�

x̄

�

b

�

x̄

�

f

�

x̄

�

dx̄ � µaµb



Correlation coefficient

By construction Vab is symmetric with positive diagonal:
Vaa

� σ2
aa.

The degree of correlation is given by the correlation
coefficient.

ρab
� Vab

σaσb

taking values in the range � 1

�

ρab

�

1.
Notice that independent variables have Vij

� 0, i

�
� j, while

the converse is not neccessarily true.



Error propagation

Suppose we know the mean values µi and covariance matrix
Vij of some random variables xi, but not the detailed p.d.f.
How do we then determine the mean and variance of some
function y

�

x̄

�

? (the bar means vector!)
If a first-order Taylor expansion around µi is OK:

y

�

x̄

� � y
�

µ̄
� �

n

∑
i � 1

δy
δxi

�

xi � µi

�

From this it easily follows (since E

�

x̄ � µ̄

�

� 0) that

E
�

y
�

x̄
� � � y

�

µ̄

�

E

�

y2 �

x̄

� � � y2 �

µ̄

� �

n

∑
i,j � 1

δy
δxi

δy
δxj x̄ � µ̄

Vij



Error propagation examples

�

Example: y � x1 � x2.

σ2
y

� σ2
x1

�

σ2
x2

� 2V12

�

Example: y � x1x2.

σ2
y

y2
�

σ2
x1

x2
1

� σ2
x2

x2
2

� 2
V12
x1x2



General error propagation

Simlarly for m functions y1

�

x̄

�

, � � � , ym

�

x̄
�

, we get the
covariance matrix:

Ukl

� cov

�

yk, yl

� �

n

∑
i,j � 1

δyk
δxi

δyl
δxj x̄ � µ̄

Vij

U � AVAT

Akj

�

�

δyk
δxi

�

x̄ � µ̄

where AT is the transposed of A.
The above equation is the basis of error propagation, where
errors on some random variables are propagated to functions
of the variables. It is only exact for linear functions.



The uniform distribution

f

�

x

�

� 1 0 � x � 1
0 otherwise

µ � 1
2

σ � 1

�

12



The uniform distribution - Examples

�

Example: The energy of a photon from decay of a π0

with energy Eπ (easy to show).

�

You could try out this simple fortran generator and
compare with others such as RANMAR, RANLUX and
RNDM

FUNCTION ZRAND()
PARAMETER(IA=205,IC=29573,IM=139968)
DATA LAST/4707/
LAST=MOD(IA*LAST+IC,IM)
IF(LAST.EQ.0) LAST=IC
ZRAND=FLOAT(LAST)/FLOAT(IM)
END



The Binomial distribution

Consider N independent trials with only two possible
outcomes: success with probability p and failure with
probability 1 � p. The probability of n successes is:

f

�

n; N, p

�

� N!
n!

�
N � n

�

!
pn �

1 � p

� N � n

µ � E
�

n
�

� Np

σ � Np

�

1 � p

�

An example is the occurrence of n triggers in N beam
crossings.



The binomial distribution
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The Poisson distribution

Consider some event happening with a fixed probability ν

per time interval. Nothing else restricts the event rate. The
probability of observing n events in such an interval is then:

f

�

n; ν

�

� νn

n!
e � ν

µ � E

�

n

�

� ν

σ �

�

ν

The Poisson distribution is the binomial in the limit of large N
and small p, keeping Np constant. It becomes Gaussian for
large ν.
The distribution reflects “ minimal information”, given a
certain mean value of integer counts.



The Poisson distribution - examples

�

An example is the number of radioactive decays
observed in a certain time and a certain amount of
material.

�

Another is the trigger-rate in a particle scattering
experiment (large number of beam crossings, small
cross-section).

�

Another is the number of cars passing the institute per
minute on working days from 2 to 3 PM.



The Poisson distribution
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The exponential distribution

�

This p.d.f. is defined on 0

� x �

∞:

f

�

n; ξ

�

� 1
ξ

e � x/ξ

µ � E

�

x

�

� ξ

σ � ξ

�

An example is the decay-time of an unstable particle.
Excercise: Show this. Show also that the time between
two subsequent Poisson-distributed events is
exponentially distributed.



The Gaussian distribution

f

�

x; µ, σ

�

� 1

�

2πσ2
exp

�
�

x � µ

� 2

2σ2

Its importance stems from the central limit theorem: The sum
of n random variables xi with any p.d.f. becomes Gaussian in
the large n limit with µ �

∑ µi and σ2 �

∑ σ2
i . Therefore

measurement errors are treated as Gaussian random
variables, holding them to be a large sum of small
contributions.
The N-dimensional generalization of the Gaussian is:

f

�

x̄; µ̄, V
�

� 1

�

2π

� N/2 �

V

� 1/2 exp �

1
2

�

x̄ � µ̄

� TV � 1 �

x̄ � µ̄

�



The Gaussian distribution



The χ2 distribution

f

�

x; µ, σ

�

� 1
2n/2Γ

�

n/2

� zn/2 � 1e � z/2 , n � 1, 2, � � �

µ � E

�

z

�

� n

σ �

�

2n

where n is called the number of degrees of freedom (d.o.f.).



The χ2 distribution

�

Consider n independent Gaussian random
measurements, xi, with known means and variances.
Then the variable

z �

n

∑
i � 1

�
xi � µi

� 2

σ2
i

is χ2-distributed for n d.o.f.

�

More generally, if the xi’s are not independent, the χ2

random variable is:

z �

�

x̄ � µ̄

� TV � 1 �

x̄ � µ̄

�



The χ2 distribution



The Breit-Wigner and Landau distributions

The cross-section for the production and decay of a resonance
particle follows a Breit-Wigner distribution:

f

�

x; Λ, x0

�

� 1
π

Γ/2
Γ2/4 � �

x � x0

� 2

with x0 being the peak-position of the resonance and Γ the
full-width at half maximum. (Γ is related to the resonance
lifetime via Heisenbergs uncertainty relation Γ � 1/τ in
natural units) .
The tails are so large that the moments are divergent.
The same problem is present in the Landau distribution,
because of hard scattered electrons (see Leo 2.6.3). Here, a
truncated mean, with outliers excluded, is often used to
determine the mean energy loss.



The Breit-Wigner distribution



The Z lineshape
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Landau smearing of the Bethe-Bloch curve

Example: dE/dx in the ALEPH TPC. Each point is a truncated
mean over at least 150 measurements with the lowest 8 and
the highest 40 excluded.



Monte Carlo methods

�

For calculating a predicted marginal p.d.f. of some
measured variable, the only practical means is often
Monte Carlo integration, i.e. random sampling of
simulated events.

�

To this end we need to transform a sequence of uniform
random numbers r1, r2, � � � to a sequence of xi with
some desired p.d.f. f

�
x

�

. Since F

�

x

�

is uniformly
distributed, we can do the job choosing xi

� F � 1 �

ri

�

.

�

In practice F � 1 �
r

�

is known analytically for only very
few functions, such as the exponential p.d.f:

F

�

x

�

r

� �

�

x

�

r

�

0

1
ξ

e � x/ξdx

x

�

r

�

� � ξ log

�

1 � r

�



Acceptance-rejection method

Otherwise the acceptance-rejection method can be used.
Assume the desired p.d.f. f

�

x

�

can be boxed in the interval
x1

� x � x2 and 0 � f

�

x

� � ymax. The following procedure:

1. Choose a random x between x1 and x2.
2. Choose a random y between 0 and ymax.

3. If y � f

�

x

�

, x is accepted.

gives a sequence of x distributed according to f

�

x

�

, since the
probability for accepting x is always proportional to f

�

x

�

.
For a sharply peaked f

�

x

�

it is cheaper (in CPU-cycles) to
envelope f

�

x
�

under some simple function g

�

x

�

tracing the
peaked shape better than a flat line. In a first step, x is then
chosen according to the (normalized) g

�

x

�

. Then use the
procedure above with ymax replaced by g

�

x

�

.



Components of High Energy Physics MC

In a high-energy physics experiment, the simulation has very
many steps, each carried out as above. To briefly mention a
few of the steps:

�

Smear the colliding beam momenta and the interaction
point (according to Gaussian p.d.f.’s).

�

Choose incoming partons according to structure
functions

�

Choose outgoing “partons” according to a matrix
element

�

Generate parton showers (e.g. with PYTHIA )

�

Combine partons into hadrons (e.g. with PYTHIA )



Components of a High Energy Physics MC -
cont’d

�

Track particles (hadrons and leptons) through the
apparatus in small steps. (with GEANT )

�

At each little step choose whether they decay, scatter,
react strongly, ionize, radiate or simply stop.

�

In any case, track all the particles created in this step.

�

Generate read-out signals according to some p.d.f.

�

Superimpose noise according to some p.d.f.



Testing two alternative hypotheses

�

Consider a set of data x1, � � � , xn relevant for the validity
of two alternative hypotheses H0 and H1. To decide
among the two, we construct a test statistic, t

�

x̄

�

, with
the likelihoods g

�

t

�

H0

�

and g
�

t
�

H1

�

.

�

We may decide to reject H0 if t � tcut. The probability of
making a mistake (for H0 true) is

α �

∞

tcut

g

�

t

�

H0

�

dt

�

The fraction of rejected H1’s are similarly:

1 � β �

∞

tcut

g

�

t

�

H1

�

dt



The likelihood ratio

�

The probability, α, for rejecting the “null hypothesis”,
H0, is called the significance level of the test.

�

Obviously, we want both α and β small in order to have
good H1 signal efficiency and small H0 background
above the cut, and vice versa below the cut. The
Neyman-Pearson Lemma states that the optimal test
statistics is the likelihood ratio:

topt

�

x̄

�

� g

�

x̄

�

H0

�

g

�

x̄

�

H1

�



Test statistic example
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Linear test statistics

�

The likelihood ratio is often too demanding on
computing ressources. A way out may be to assume a
linear dependence between topt and x̄:

t

�

x̄

�

�

n

∑
i � 1

aixi

� āT x̄

�

For each of the two alternative hypothesis, k, we have
predicted means and sigmas of the test statistic:

τk

� āTµ̄k

Σ2
k

� āTVk ā



Fishers linear discriminant

�

We want to maximize the separation:

J

�

ā

�

�

�

τ0 � τ1

� 2

�
Σ2

0

�

Σ2
1

�

�

The result of this maximization is

ā ∝
�

V0

� V1

� � 1 �

µ0 � µ1

�

The corresponding t

�

x̄

�

� āT x̄ is Fishers linear
discriminant. For Gaussian p.d.f’s this is just as good as
the likelihood ratio. For more distorted p.d.f.’s, a
trained neural network is a good alternative.



Testing a single hypothesis

�

To test a single hypothesis, H0, we calculate the
probability for measuring a data set which is less
compatible than the actual observation with the
hypothesis. This is the P-value or observed significance
level.

�

As an example, consider some evidence for a new signal
in form of a much larger number of observed events
nobs than the expected mean number of background
events νb. The probability to see nobs events or more
under the standard null hypothesis is

P

�

n � nobs

�

�

∞

∑
nobs

f

�

n, νb

�

� 1 �

nobs � 1

∑
0

νn
b

n!
e � νb .



Testing a single hypothesis
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Some remarks on significance levels

�

Note that P is not the probability of νsignal

� 0. It is the
probability of the data, assuming this hypothesis.

�

Another pitfall is the “look-elsewhere” effect. If other
new signals had been looked for and none found, the
probability for accidentally finding one large excursion
among all these possibilities should be quoted.

�

Finally there is a possible systematic uncertainty in the
estimation of νb.

�

Thus, a very low P-value is required for a discovery,
typically the probability for a Gaussian variable to be
more than 5σ away from its expectation value.



Parameter estimation

�

Consider a sample, x̄ �
�

x1, � � � , xn

�

, of independent
measurements of a single random variable with a p.d.f.,
f

�

x; θ

�

, whose parameters, θ, are not known. We wish to
construct an estimator, θ̂

�

x̄
�

.

�

If θ̂

�

x̄

�

converges to θ in the large n limit, the estimator
is consistent.



bias and variance of estimators

�

The estimator is itself a random variable with
expectation value

E

�

θ̂

�

� θ̂

�

x̄

�

f

�

x1; θ
�

� � � f

�

xn; θ

�

dx1

� � � dxn

The bias of the estimator is b � E

�

θ̂

�

� θ.

�

a measure of quality of the estimator is its mean squared
error:

E

� �

θ̂ � θ

� 2 �

� V

�

θ̂

� � b2



Estimator of the mean

�

A consistent and unbiassed estimator of the mean µ is
the sample mean:

� x � � 1
n

n

∑
i � 1

xi

The variance of this estimator is

V

� � x � �

� σ2

n



Estimators of higher moments

�

A consistent and unbiassed estimator of the variance µ
is the sample variance:

s2 � 1
n � 1

n

∑
i � 1

�

xi � � x � � 2

The variance of this estimator (the“error on the error”)
is

V
�

s2 �

� 1
n

µ4 �

n � 3
n � 1

σ4

where µ4 is the fourth central moment ( � 3σ4 for
Gauss).

�
.. and so on for the covariance of two variables or higher
moments.



Maximum likelihood Estimators

�

The likelihood function is defined:

L

�

θ

�

�

n

∏
i � 1

f
�

xi; θ

�

which is just the joint p.d.f. of the n measurements of x -
now viewed as a function of the parameters θ. An
obvious guess of θ are the values θ̂ that maximize the
likelihood:

δL
δθi

�
�
�
�

θ � θ̂

� 0



The Rao-Cramer-Frechet inequality

�

It can be shown that the minimum possible variance is
given by the Rao-Cramer-Frechet inequality:

V

�

θ̂

� � 1 � δb
δθ

2
/E

�

�

δ2 log L
δθ2

�

�

The ML estimator satisfies the equality in the large
sample limit.

�

The ML estimator is transformation invariant:�

g

�

θ

�

� g
�

θ̂
�



A maximum likelihood estimator example

Example: Suppose a number of lifetimes,
�

t1
� � � tn

�

, are
measured for some sample of an unstable particle. Our
hypothesis for the p.d.f. would be:

f

�

t; τ

�

� 1
τ

e � t/τ

and our estimate of τ would be the value, τ̂ , maximizing the
log-likelihood:

log L

�

τ

�

� ∑ log
1
τ

�

ti
τ

τ̂ � 1
n ∑ ti



Bias and variance - example

It is “easy” to show that the expectation value is E

�

τ̂

�

� τ, so
that the estimator is unbiased. Likewise it is “easy” to show
that:

V

�

τ̂

�

� E
�

τ̂2 �

�
�

E

�

τ

� � 2

� τ2

n

in accordance with “the error on the mean”, and saturating
the RCF bound



Variance of ML estimators - by fitting

For the case of several parameters, the RCF bound (with no
bias) is

�

V � 1

�

ij

� E �
δ2 log L
δθiδθj

suggesting an estimator of the inverse covariance matrix:

� �
V � 1

�

ij

� �

δ2 log L
δθiδθj

��
��
��
��
�

θ � θ̂

which for a single parameter becomes

�

σ2
θ̂

� � 1/
δ2 log L

δθ2

�
�
�
�

θ � θ̂



Variance of ML estimators - by simulation

An alternative way is to simulate a large number of
experiments, each with n measurements, to determine θ̂, E

�

θ̂

�

and V

�

θ̂

�

. A Taylor expansion near the log L maximum gives:

log L

�

θ

�

� log L

�

θ̂

� � 1
2!

�

δ2 log L
δθ2

�

θ � θ̂

�

θ � θ̂

� 2 �
� � �

log L

�

θ

�

� log Lmax �
�

θ � θ̂

� 2

2

�

σ2
θ̂

log L

�

θ̂

�

σ̂θ̂

�

� log Lmax �

1
2

Hereby θ̂ and σ̂θ̂ can be determined by a graphical method
using the two last equations.



The least squared method

Consider N measurements, yi, supposedly given by some
function λ

�

xi, θ̄

�

, where the variables xi are known without
error, but the parameters θ̄ are unknown. Suppose now the
yi’s are Gaussian random variables centered around the value
of λ. The joint p.d.f. is then a product of Gaussians, and its
logarithm is:

log L

�

θ̄
�

� �

1
2

N

∑
i � 1

�

yi � λ

�

xi; θ̄

� � 2

σ2
i

� �

1
2

χ2 �

θ̄

�

So maximizing log L corresponds to minimizing χ2.
The method of least squares applies the latter procedure even
to non-Gaussian variables.



Fitting non-independent data

In case the yi are not independent, but described by an
N-dimensional Gaussian with covariance matrix V, the
quantity to be minimized is:

χ2 �

θ̄

�

�

N

∑
i � 1

�

yi � λ
�

xi; θ̄
� � �

V � 1
ij

� �

yj � λ

�

xj; θ̄

� �



Goodness of fit

Consider again N measurements, yi, and a hypothesis λ

parametrized by m parameters. If the following conditions
are fulfilled:

�

The yi’s are independent Gaussian random variables

�

λ is linear in the parameters

�

λ has the correct functional form

then the χ2 will follow the χ2-distribution with N � m
degrees of freedom. The P � value

P �

∞

χ2
f

�

z; nd

�

dz

may provide a subjective criteria for rejecting the hypothesis.



The least squared method (linear case)

Consider the case of a linear function of m parameters θ̄

λ

�

xi, θ̄

�

�

m

∑
j � 1

aj

�

xi
�

θj

�
m

∑
j � 1

Aijθj

The functions aj must be linearly independent.
χ2 is then in matrix notation:

χ2 �

�

ȳ � Aθ̄

� TV � 1 �

ȳ � Aθ̄

�



The least squared method (linear case)

The minimum χ2 is given by

�

χ2 � � 2

�

ATV � 1ȳ � ATV � 1 Aθ̄

�

� 0

which is solved by

θ̂ �

�

ATV � 1 A
� � 1 �

ATV � 1 �

ȳ � Bȳ



Errors in the least squared method

By error propagation we get the covariance of the fitted
parameters:

U � BVBT �
�

ATV � 1 A

� � 1

� 1
2

δ2χ2

δθiδθj
θ � θ̂

� 1

This corresponds to the RCF bound when the yi’s are
Gaussian, in which case log L � � χ2/2. Thus, changing one
of the fitted parameters by one sigma will increase χ2 to
χ2

min

� 1.



Example: Straight line fit (1)

For the case of a straight-line hypothesis: y
�

x
�

� α1

�

α2x, one
obtains for a sequence of independent measurements yi the
following parameter estimates,

�

α1

�

�

g1V � 1
22

� g2V � 1
12

�

/D ,

�

α2

�

�

g2V � 1
11

� g1V � 1
12

�

/D ,

where

�

V � 1
11 , V � 1

12 , V � 1
22

�

� ∑

�

1, xi, x2
i

�

/σ2
i ,

�

g1, g2

�

� ∑

�

1, xi

�

yi/σ2
i ,

respectively, and D � V � 1
11 V � 1

22

�
�

V � 1
12

� 2.



Example: Straight line fit (2)

The covariance matrix of the fitted parameters is

�

V11, V12, V22

�

�

�

V � 1
22 , V � 1

12 , V � 1
11

�

/D .

The estimated variance of an extrapolated value of y is

σ2
y

� 1
V � 1

11

� V � 1
11
D

x �

V � 1
12

V � 1
11

2

.



Weighted averages in the least squared
method

If we have several independent estimates yi of the same
quantity λ, but with different errors σi, we can combine these
measurements using the formula for weighted average:

λ̂ � ∑ yi/σ2
i

∑ 1/σ2
j

V
�

λ̂
�

� 1
∑ 1/σ2

j

It becomes more complicated if the yi are not independent
(due to e.g. common systemic errors). Common errors should
be separated out and added after the averaging.



The least squared method on binned data

Consider n observations of x presented in a histogram with
N bins. We want to compare it with a hypothetical p.d.f. with
probabilities pi

�

θ

�

for each bin. For sufficiently large N, the
number of entries in each bin, yi, are approximately Poisson
distributed. Thus, the parameters are found by minimizing:

χ2 �

θ̄

�

� �
1
2

N

∑
i � 1

�

yi � npi

�

θ̄

� � 2

npi

�

θ̄

�



the Modified Least Squares method

�

Often, the denominator is replaced by the measurement
itself, yi, for convenience. This is called the modified
least squares method (MLS). It is the standard fit
method in PAW and ROOT. But it is not ideal if some
bins have very few entries. In this case use the Max
Likelihood option.

�

Notice also, that if the total number of entries is also left
free in the fit, it will get a biassed estimate in general:
ν̂LS

� n �

χ2/2 and ν̂MLS

� n � χ2. So it is better to
count the number of entries and fix it before the fit.



Numerical tools

�

Fitting multi-parameter functions can be done by the
MINUIT package, either interactively via its PAW or
ROOT interface, or in a fortran program via the
HBOOK interface or directly using MINUIT.

�

In order to get started with these tools, it is essential to
go through e.g. Troels Pedersens short tutorial. For
bigger tasks you have to get hold of the PAW manual, or
the ROOT manual, from the links listed in the
beginning of theses lectures.



Confidence intervals

The standard way of reporting an estimate is θ̂

�

σθ̂ . By this
we mean that, should our experiment be repeated many
times, the sample variance is estimated to be σ2

θ̂
. For a

Gaussian p.d.f., g

�

θ̂; θ

�

, this means that 68.3% of these
experiments should give an estimate within the standard
error from the truth.
But if g

�

θ̂; θ

�

is not Gaussian we need more precise ways of
reporting a result. We need to indicate an interval of θ that is
expected to cover the true value with some specified
confidence level (CL).



Confidence intervals

�

Let u

�

θ

�

be such that P

�

θ̂

� u

�

θ

� �

� α, and let v

�

θ

�

be
such that P

�

θ̂

� v

�

θ

� �

� β. Let the inverse of these
functions be a

�

θ̂

�

� u � 1 �

θ̂

�

and b
�

θ̂

�

� v � 1 �

θ̂

�

. Thus,
regardless of the true value of θ we have:

P

�

v

�

θ

� �

θ̂
� u

�

θ

�

� 1 � α � β

P

�

a
�

θ̂
� �

θ

� b

�

θ̂

�

� 1 � α � β

where the last equation does not indicate the
probability of θ, but rather the probability that the true
value is “covered” by the interval. This probability is
called the confidence level.

�

For α � β � γ/2 we talk about a central confidence
interval. If e.g. β � 0, we talk about a one-sided
confidence interval or limit.



Confidence intervals, Gaussian case

In case of a (multi)Gaussian p.d.f. for the estimated
parameters, g

�

θ̂; θ

�

, the quantiles indicate how far away from
θ̂obs, measured in units of σθ̂ , we need to go in order to obtain
a certain confidence level. Here are some central and
one-sided intervals:

sigma’s 1 � γ sigma’s 1 � α

1 0.6827 1 0.8413
2 0.9544 2 0.9772
3 0.9973 3 0.9987

1.645 0.90 1.282 0.90
1.960 0.95 1.645 0.95
2.576 0.99 2.326 0.99
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