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ABSTRACT

Determination of a petroleum reservoir structure and rock
bulk properties relies extensively on inference from reflec-
tion seismology. However, classic deterministic methods to
invert seismic data for reservoir properties suffer from some
limitations, among which are the difficulty of handling com-
plex, possibly nonlinear forward models, and the lack of ro-
bust uncertainty estimations. To overcome these limitations,
we studied a methodology to invert seismic reflection data in
the framework of the probabilistic approach to inverse prob-
lems, using a Markov chain Monte Carlo (McMC) algorithm
with the goal to directly infer the rock facies and porosity of
a target reservoir zone. We thus combined a rock-physics
model with seismic data in a single inversion algorithm. For
large data sets, the McMCmethod may become computation-
ally impractical, so we relied on multiple-point-based a priori
information to quantify geologically plausible models. We
tested this methodology on a synthetic reservoir model. The
solution of the inverse problem was then represented by a
collection of facies and porosity reservoir models, which were
samples of the posterior distribution. The final product in-
cluded probability maps of the reservoir properties in ob-
tained by performing statistical analysis on the collection of
solutions.

INTRODUCTION

Inverse methods in geophysics are fundamental tools for unrav-
eling the structure and rock properties within the subsurface of our

planet. They are used to advance our knowledge in basic research
and to provide crucial information in more applied contexts such as
the oil and gas industry. In the latter case, understanding the struc-
ture and properties of the subsurface determines where to explore
for hydrocarbon resources and how to effectively manage them.
Seismic inversion has proven to be a key method to better under-
stand the subsurface (e.g., Woodward et al., 2008; Bosch et al.,
2010), returning high-resolution images. Nevertheless, in the con-
text of exploration geophysics, inverting seismic data for only elas-
tic properties is often not sufficient because the reservoir properties
of interest are usually lithologies, fluid saturation, porosity, and
other physical quantities.
Unfortunately, by using traditional methods, direct inference of

reservoir properties is hampered by the difficulty of properly de-
scribing the link among seismic observables, elastic properties,
and reservoir rock properties such as porosity or oil saturation, a
relationship that can be described by rock-physics models. This in-
verse problem also suffers from the common pathology of non-
uniqueness. Rock-physics models are often nonlinear, making
common deterministic optimization methods not always suitable
for performing direct inverse modeling for those properties. One
common approach (e.g., Doyen, 2007) is a sequential procedure
in which the seismic data are first inverted for elastic properties us-
ing a gradient-based or stochastic technique and then it transforms
elastic properties into reservoir properties using rock-physics mod-
els and statistical analysis on well log data. This sequential scheme
gives equivalent, but not identical, results to the joint approach in
which elastic and reservoir properties are inverted simultaneously
when all relationships are linear and Gaussian. On the contrary,
if relationships are nonlinear, the sequential approach provides
biased parameter estimation including maximum probability and
mean (Bosch, 2004). Moreover, with this approach, it is not
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possible to obtain unbiased estimation of uncertainties; gradient-
based methods linearize the problem around an initial solution, los-
ing the information necessary for a correct uncertainty appraisal.
Other approaches include Gaussian mixture models (Grana and
Della Rossa, 2010) and prior models based on skewed distributions
(Karimi et al., 2010). Uncertainty assessment is of utmost impor-
tance in inverse problems because the latter represents inferences
from indirect measurements carrying uncertainties as well as an
approximated description of the physics of the system, i.e., the for-
ward model (Gouveia and Scales, 1998; Tarantola, 2005). Specifi-
cally, for the problem described in this paper, in which the prior
model can be expressed only by generating samples from numerical
procedures, sampling methods represent a more effective strategy to
correctly estimate uncertainties (Mosegaard, 1998).
The joint approach using Monte Carlo methods based on a prob-

abilistic framework provides some advantages. Monte Carlo meth-
ods can handle the nonlinearities of the forward model (e.g., rock-
physics models) because only forward modeling and sampling of
the prior distribution are needed to run the algorithm, i.e., there
is no need to compute derivatives, unless an invariant definition
of conditional probability is pursued (Mosegaard and Tarantola,
2002). The algorithm explores the model space extensively, so that,
theoretically, several regions of high posterior probability may be
sampled, resulting in a more comprehensive characterization of pos-
sible solutions. It is also easy to include hard/soft constraints in the
algorithm such as well-log data because it only requires a routine
able to generate models according to the prior information. Finally,
a more robust estimation of uncertainties is provided by the collec-
tion of solutions sampled by the algorithm. However, this method-
ology is computationally very demanding; hence, some techniques to
increase the efficiency are needed. In general, all problem-indepen-
dent algorithms (metaheuristics) perform the same when averaged
over all conceivable problems (the so-called blind search) (Mose-
gaard, 2012), but tailoring an algorithm for a specific problem
may increase efficiency.
Using informed priors, i.e., priors that carry a significant amount

of information relying on expertise or independent data, through the
incorporation of geostatistics, has become commonplace in reser-
voir characterization, using multipoint statistics (e.g., Hansen et al.,
2008; Cordua et al., 2012; Hansen et al., 2012) and Markov models
for facies classification (Ulvmoen and Omre, 2010; Ulvmoen et al.,
2010). Several attempts have been made to invert for reservoir prop-
erties that integrate seismic inversion with rock physics and geosta-
tistics; a review can be found in Bosch et al. (2010). Some are
deterministic inversions, which result in a single solution (Bosch,
2004), and some are fully (Bosch et al., 2007) or partially stochastic
(González et al., 2008). Most of this work relies on a combination of
traditional seismic inversion and geostatistics to take into account
spatial correlations of facies and reservoir properties. Geostatistics
can be represented by the two-point statistic of variograms (e.g.,
Journel and Huijbregts, 1978; Grana et al., 2012) or by the more
advanced multipoint statistics method that is able to capture patterns
from training images (e.g., Strebelle, 2002; González et al., 2008;
Remy et al., 2009). The strategy we propose in this paper is to use
informed priors to introduce a priori information into the algorithm,
reducing the size of the search space, thus increasing efficiency
(Cordua et al., 2012; Hansen et al., 2012). We use some form of
complex geologic prior knowledge, which helps restrict the number
of possible models that are proposed by the algorithm.

We provide a study in which we combine (1) a rock-physics
model, (2) a complex prior based on multiple point statistics, and
(3) reflection seismic data whereby, unlike previous studies so far in
which some approximations were in place, we are able to obtain
actual samples from the posterior using a “pure” probabilistic ap-
proach, i.e., strictly adhering to the theory explained in Mosegaard
and Tarantola (2002).
Our aim is to develop an algorithm that is capable of inverting

relatively large data sets combining geostatistics, rock physics, and
seismology for a 3D arrangement of voxels representing physical
properties. We illustrate the results of the inversion of seismic re-
flection data from a synthetic test model showing how it is possible
to invert directly for reservoir properties in a probabilistic frame-
work. Using techniques derived from geostatistics, we are able to
convey prior information that helps to make the computational prob-
lem tractable by reducing the space of possible models. We also pro-
vide uncertainty assessment discussing some marginals on porosity
and facies. The application of this methodology using a real data set
of measurements will be the subject of another paper.

PROBABILISTIC INVERSE RESERVOIR
MODELING

To understand structure and properties of the subsurface, we rely
on indirect measurements mostly performed on the surface of the
earth using an approximate description of the physical system. The
measurements are affected by uncertainties that must be taken into
account. For this reason, we use methods drawn from probabilistic
inverse theory to infer the sought properties.
Monte Carlo sampling methods provide a solution to the inverse

problem in the form of a collection of models that approximate the
posterior distribution. In our case, we are interested in the “impor-
tance sampling” methods because of their particular properties.
Sample points of a probability distribution are defined as points
such that the probability of any point to be inside a certain domain
equals the probability of the domain (Tarantola, 2005). Basically,
using these techniques, the solutions are sampled at a rate propor-
tional to their a posteriori probability (importance sampling); i.e.,
models that better fit the observed data and are consistent with
the a priori information are sampled more frequently. This ensemble
of models can be analyzed to find out a particular feature of the
models in that this collection encloses all the information we have
on the posterior. If, for instance, we are interested in the porosity in
a particular area of the model, we can make a histogram of the
porosity in that area using the collection of solution models and
review the possible scenarios. Sampling the posterior helps us to
understand whether we are in the presence of, e.g., marginal Gaus-
sian distributions, for which we might be interested in computing
the mean model, its variance, or in more complex, multimodal dis-
tributions, that give rise to a multitude of quite different but plau-
sible scenarios.
In this framework, three ingredients are then needed for a com-

prehensive investigation of reservoir properties: (1) An algorithm
that uses geostatistics to generate realizations of the prior models,
(2) a rock-physics model linking bulk rock properties with elastic
parameters, and (3) a technique to compute seismograms from elas-
tic properties at given locations on the surface. Our aim is to com-
bine these ingredients in a simple, consistent, and comprehensive
algorithm to sample the posterior distribution.
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A glimpse of the Markov chain Monte Carlo method
for reservoir model analysis

Background theory

The general solution to inverse problems in the probabilistic ap-
proach is given by Mosegaard and Tarantola (2002) and Tarantola
(2005)

σðd;mÞ ¼ k
ρðd;mÞΘðd;mÞ

μðd;mÞ ; (1)

where the posterior distribution σðd;mÞ is computed from a normali-
zation constant k, the homogeneous state of information μðd;mÞ
and the combination of the prior ρðd;mÞ and theoreticalΘðd;mÞ prob-
ability densities. Note that d and m belong to data D and model
M space, respectively. However, we are interested in the marginal
σMðmÞ, which represents the posterior probability in the model space,
telling us the probabilities associated with all conceivable models. Under
the assumption that μðd;mÞ ¼ μðdÞμðmÞ, this marginal is given by

σMðmÞ ¼
Z
D
k
ρðd;mÞΘðd;mÞ

μðd;mÞ dd

¼ kρMðmÞ
Z
D

ρDðdÞΘðdjmÞ
μDðdÞ

dd

¼ kρMðmÞLðmÞ: (2)

The two densities ρMðmÞ and LðmÞ represent the prior and the like-
lihood function that measures the degree of fit between the calculated
and the measured data, respectively. The objective of our inverse prob-
lem is then to characterize the posterior distribution.
Mosegaard and Tarantola (1995) propose an algorithm (called the

extended Metropolis algorithm in Mosegaard, 2006), which is able
to sample the posterior distribution given a prior model generator
and a routine able to perform the forward modeling. These are the
only two necessary elements to perform sampling of solutions to the
inverse problem. The value of the prior distribution does not need to
be known exactly. This is a Markov chain Monte Carlo (McMC)
method because it is based on a Markov process; i.e., the next state
of the chain depends only on the current state (no memory).

Inversion algorithm

The extendedMetropolis sampler is shown in Algorithm 1 as a pseu-
docode. We first initialize the two variables niter and nsave, which re-
present the requested number of iterations and the number of proposed
models to skip before saving the current model in the ensemble of sol-
utions. The Metropolis algorithm produces realizations that are corre-
lated; therefore, it is necessary to discard part of them, i.e., save a model
in the collection of solutions only every nsave proposed models, to
obtain statistically independent models. This variable should be esti-
mated after some trial runs, analyzing the correlation of models to en-
sure independence of samples. This operation could be carried out after
a complete run of the algorithm, namely, after the collection of samples
has been obtained. However, the storage requirements for a high num-
ber of iterations and large 3Dmodels may prevent the application of the
latter procedure, as discussed in the numerical experiments described
below. The next step is to set an arbitrary starting model as the “current”
model mcur (Algorithm 1, line 2). Theoretically, the influence of this

starting model on the performance of the algorithm is only on the
length of the burn-in phase, i.e., the first stage, when the algorithm tries
to locate a high-probability region to start sampling. Practically, if the
number of iterations that is run afterward is insufficient, the algorithm
may fail to explore some high-probability regions depending on the
starting model. The closer the starting model is to a high-probability
region, the shorter is the burn-in phase. After setting the starting model,
the iterative part of the algorithm starts (“for” loop in Algorithm 1, line
3), which will continue for niter iterations. First, a new model is drawn
from the prior distribution; i.e., a new model that is in agreement with
the prior information is proposed. In practice, the current model is
somehow modified or “perturbed” to obtain the new model mnew,
for instance, randomly changing only a small volume of it. The
new proposed modelmnew is accepted as the next move of the random
walk with probability Pacc following the Metropolis rule (Mosegaard
and Tarantola, 1995) (Algorithm 1 line 5). Notice that, when using this
rule, the normalization constant k of equation 2 does not need to be
calculated explicitly because it appears on the numerator and denom-
inator of the relation shown on line 5 of Algorithm 1 and is hence
simplified. If accepted, the new proposed model becomes the current
model (Algorithm 1, line 7); otherwise, the random walk stays at the
current position (Algorithm 1, line 9). Finally, the model is retained in
the ensemble of solutions only every nsave proposed models (Algo-
rithm 1, lines 11 and 12, in which “mod” indicates the modulo).
Importance sampling is a useful property of this method because

models with higher posterior probability are sampled more frequently
by the algorithm, so that volumes of high probability in the posterior
distribution are characterized by a denser sampling. This allows us to
use statistical inference oncewe obtain the collection of solutions.We
can then calculate any kind of information ΦðmÞ related to the prob-
ability σðmÞ using the following relationship:Z

M
ΦðmÞσðmÞdm ≈

1

N

XN
i¼1

ΦðmðiÞÞ; (3)

Algorithm 1. Extended Metropolis sampler.

1: set niter, nsave

2: select a starting model and set it as the current model mcur

3: for i ¼ 1, niter do

4: perform one step with the prior sampler to obtain mnew

5: mnew is accepted with probability

Pacc ¼ min
h
1;
LðmnewÞ
LðmcurÞ

i

6: if mnew is accepted then

7: mcur ¼ mnew

8: else

9: mcur ¼ mcur

10: end if

11: if i (mod nsave) == 0 then

12: save mcur in the collection of solutions

13: end if

14: end for
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whereN is the number of models sampled (the ensemble of solutions)
and mðiÞ represents a series of independent draws. The error of the
integral tends toward zero with growingN. Some examples of the use
of this formula are shown in the result of the numerical experiments.
To improve the performance of the Metropolis algorithm, we ex-

ploit a parallel implementation that significantly decreases the run
time. Instead of computing one forward model at a time, we concur-
rently draw several perturbed models from the prior and compute in
parallel all likelihoods, a technique similarly proposed by Brockwell
(2006). This “prefetching” technique is computationally more costly
because more models are unused than in the traditionalMetropolis, but
it takes advantage of parallelization, saving a significant amount of run
time. The prefetching Metropolis sampler is shown in Algorithm 2.
The main difference compared to Algorithm 1 is that many new

models, depending on the number of CPUs used (ncpus), is pro-
posed from the current model at each iteration. The computation
of the likelihood for these models is then carried out in parallel,
saving a significant amount of time that depends also on the rate
of acceptance for the particular run.

Our algorithm follows the requirements described in Mosegaard
and Tarantola (1995), and, therefore, it samples the posterior dis-
tribution. We construct a multistep algorithm, including a rock-
physics model, seismic modeling, and geostatistics, capable of sam-
pling the posterior distribution that is described in the following. We
finally obtain a collection of solutions in the model space M.

Geostatistical prior model

High-dimensional spaces tend to be empty, suffering from the so-
called curse of dimensionality (Tarantola, 2005); therefore, sam-
pling them is a difficult task that usually requires a tremendous com-
putational effort. Because of the large number of model parameters,
the size of the model space to be searched is often so huge that the
computational time needed simply cannot be afforded. In this case,
the most effective way of addressing this problem is to use all the
available prior knowledge and convey it into the sampling algorithm
so that the number of possible models to be sampled is greatly re-
duced. If the prior model has significant spatial correlations, as it is
assumed for subsurface properties, the effective number of degrees
of freedom is usually smaller than the number of parameters. This
may help in increasing the efficiency (Hansen et al., 2009).
A noninformed sampling for reservoir properties is not feasible

for even a subset of the number of parameters necessary in a real
application because of the huge number of iterations it would re-
quire. To overcome this difficulty, we propose to use all available
prior information to constrain the solution and reduce the size of the
space of possible models. A traditional way of inputting of prior
information has been to use the distance from some given model
(perhaps under Gaussian assumptions), which in practice is often
difficult to provide. Recently, a more sophisticated technique has
appeared to input complex a priori information into probabilistic
inverse problems (González et al., 2008; Cordua et al., 2012; Han-
sen et al., 2012). This technique relies on geostatistics to generate
realizations of prior models taking into account multiple-point sta-
tistics by means of the occurrence of patterns in a given model. Spe-
cifically, the geostatistical algorithm uses prototype models, which
embed the structure of the subsurface expected in the area of study,
in the form of training images (Guardiano and Srivastava, 1993;
Strebelle, 2002) to generate new realizations of the model such that
they hold the same statistical properties, in terms of patterns, as the
training image. These training images are a means to translate the
“expert” knowledge (information) from, for instance, a geologist
into the inversion algorithm.
The multipoint algorithm is thus used to generate realizations of

the reservoir model according to the prior knowledge, the first step
in the proposed McMC method. However, generating an entirely
new model at each iteration of the random walk would be too large
of a step for the Metropolis sampler, resulting in a very low accep-
tance ratio. Therefore, the size of the volume that is resimulated at
each iteration needs to be small compared to the size of the entire
model. In this way, the steps performed by the random walk are
similarly small. The location and size of the volume to be resimu-
lated are selected randomly at each iteration. This is an application
of the sequential Gibbs sampler as described by Hansen et al.
(2012). Moreover, in approximately 10% of the cases, the algorithm
attempts to perform a bigger step to encourage the random walk to
explore other places of the posterior distribution, aiming at improv-
ing mixing. The size of the patterns and the volume to be resimu-
lated determine the amount of structure (or correlations) that we

Algorithm 2. Extended Metropolis sampler.

1: set niter, nsave and ncpus

2: nprmod = 0

3: select a starting model and set it as the current model mcur

4: for i ¼ 1, niter do

5: spread the current model to all CPUs, so that
mðp¼1; : : : ;ncpusÞ

cur ¼ mcur

6: for p ¼ 1, ncpus [IN PARALLEL] do

7: perform one step with the prior sampler to obtain mðpÞ
new

8: compute the likelihood LðmðpÞ
newÞ

9: end for

10: for p ¼ 1, ncpus do

11: nprmod = nprmod + 1

12: mðpÞ
new is accepted with probability

PðpÞ
acc ¼ min½1; LðmðpÞ

newÞ
LðmcurÞ

�

13: if mðpÞ
new is accepted then

14: mcur ¼ mðpÞ
new

15: if nprmod (mod nsave) == 0 then

16: save mcur in the collection of solutions

17: end if

18: exit from inner loop

19: else

20: mcur ¼ mðpÞ
cur

21: end if

22: if nprmod (mod nsave) == 0 then

23: save mcur in the collection of solutions

24: end if

25: end for

26: end for
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convey in the algorithm (line 4 in Algorithm 1), affecting the num-
ber of iterations needed to converge toward the equilibrium prob-
ability and also restricting the model space.
It is important to remark that the input prior information must be

carefully studied, as its weight on the solution to the inverse prob-
lem might be high. Wrong prior information (geologic scenario,
prototype model) may result in a biased posterior assessment and
could potentially drive the interpretation away from the real solu-
tion. Therefore, a careful critique must be applied when deciding the
amount and type of information to be introduced in the inversion
process.

NUMERICAL EXPERIMENTS

In this section, we illustrate the application of the methodology
using a numerical example. We construct a synthetic set of seismic
measurements using a 3D synthetic reservoir model. The observed
data dobs are seismograms obtained convolving the reflection coef-
ficients obtained from the model with a 50-Hz Ricker wavelet, as
explained below, simulating a data set from a seismic survey proc-
essed to obtain zero-offset equivalent data. Correlated, zero-mean
Gaussian noise with a standard deviation of 0.14 and a given covari-
ance matrix is added to the observed data to simulate measurement
errors. Our target properties are facies and porosity, i.e., model
parameters to be derived. Hard constraints, such as data from wells,
can easily be handled by this algorithm, but we consider all proper-
ties sought as unknown at all locations in our model. To sample
the posterior distribution, we set up a McMC algorithm following
Algorithm 2 described above. It is composed of three main ele-
ments: a prior generator, forward modeling routines including rock
physics and seismic modeling, and the extended Metropolis sam-
pler. The prior sampler produces facies and porosity models accord-
ing to our prior information.
In the following, we describe the parameterization of our prob-

lem, the procedure to sample the posterior, all elements that form
the forward model, and finally we discuss the results.

Parameterization

We construct a synthetic example derived from the Stanford
VI reservoir model (Lee and Mukerji, 2012), using only the upper
layer. The Stanford model represents a fluvial channel system and is
comprised of three different layers, representing deltaic deposits,
meandering channels, and sinuous channels, the latter used in this
study. We preserve the geometry of the channels and use the same
rock-physics model, but we reassign all properties. We upscale the
upper layer of the model and considered only two facies: shale and
sand. The number of voxels in the x-, y-, and z-directions is 38, 50,
and 20, with dimensions of 100, 100, and 4 m, respectively. This
model ideally represents a target zone of a larger reservoir. Figure 1
depicts the reservoir model used to compute the synthetic measure-
ments that constitute the “observed data” (Figure 2) of our problem.

Sampling the prior

First, we use an algorithm that uses geostatistics to generate fa-
cies models from the prior distribution. This algorithm, given a cur-
rent model of facies, is capable of generating new realizations of the
model using the information retrieved from a training image. To
generate new realizations of the reservoir model, the new model,

we perturb the current facies model following the procedure de-
scribed in Lange et al. (2012), in which only a block (a subset)
of the 3D model is changed using sequential simulation. The tem-
plate is a 3D hyper-rectangle that defines the geometry and size of
the patterns that we are looking for. Given a particular voxel in the
model, the template is defined by its surrounding voxels (Lange
et al., 2012). We choose a small template with dimensions of (3,
3, 3) voxels. Figure 3 shows the training image. As explained above,
generating a completely new realization of a model results in a sig-
nificant step in the random walk, so we choose to resimulate only a
small volume of the model at a time. This volume has a randomly
variable size (which corresponds to a variable step length in the
McMC algorithm), defined for each direction x, y within the range
[3, 5], and 3 voxels for the z-direction with a 90% probability for the
normal step and [5, 7] for x, y, and [3, 5] voxels for the z-direction
with the remaining 10% probability for the long step. Because the
probability to move from the current state to the new and vice versa
is the same, the property of detailed balance is still satisfied; there-
fore, the chain will equilibrate at the correct equilibrium distri-
bution.
The second step is to compute the porosity of each voxel describ-

ing it as a random variable linked to the facies model. Because
porosity ϕ is bounded between [0, 1], following Bosch et al.
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Figure 1. The two-facies reservoir model used in the numerical
experiments to compute the synthetic measured data. Red voxels
represent shale, whereas the blue represents sand.
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Figure 2. Plot of synthetic observed data showing slices through
the seismic volume.
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(2007), we apply a transformation to logarithmic porosity that al-
lows for the use of Gaussian modeling. The logarithmic porosity ϕ�

and its back-transform are then given by

ϕ� ¼ ln

�
ϕ

ð1 − ϕÞ
�

and ϕ ¼ expðϕ�Þ
ð1þ expðϕ�ÞÞ : (4)

We then model the logarithmic porosity as a random variable using
a Gaussian density function, with mean and variance depending on
the facies. In the reference model, porosity has a mean value of 0.3
and 0.05 for sand and shale, respectively.
Our model m is now composed by two arrays: facies and poros-

ity. In this setup, the prior distribution of facies is not known ex-
plicitly, but we are able to sample it; whereas for porosity, the
distribution is known. For simplicity, in this study, porosity is as-
sumed to be spatially independent.

Solving the forward problem

We now describe in detail all the steps involved in calculating the
synthetic data dcalc ¼ gðmÞ using the nonlinear forward model
gðmÞ, where g represents the mapping between model parameters
and calculated seismic data.

Rock physics

The rock-physics model is a fundamental element that links the
bulk rock properties (in our case, facies and porosity) and physical
conditions with elastic parameters. We follow the Stanford VI res-
ervoir model (Lee and Mukerji, 2012). We consider the rocks to be
composed of three minerals, clay, quartz, and feldspar, and rock
fragments with known volume fraction. In a real case, volume frac-
tions are estimated with a possibly significant uncertainty, which
should be taken into account in the algorithm; however, for simplic-
ity, to keep the computational cost feasible, we assume to know
their value. We model two different facies: shale and sand. The sand
facies is oil-/brine-saturated (oil saturation equal to 0.85), whereas
the shale facies is fully brine saturated. The sand facies is consid-
ered a poorly cemented sandstone. The objective is to compute the
elastic bulk and shear moduli K, G, and the density ρ of the bulk
rock. In our model, these parameters depend on facies and porosity.
The elastic properties and density of minerals and fluids used in this
experiment are summarized in Table 1.
When brine and oil are present, it is possible to compute the

effective density using the concept of the effective fluid as

ρf ¼
X2
i¼1

SiρfðiÞ; (5)

where ρfðiÞ is the density of the single fluid i and Si is the saturation
of the fluid i. The density of the bulk rock can be computed as a
volumetric average of the densities of the minerals as

ρ ¼ ϕρf þ ð1 − ϕÞ
XN
i¼1

VmðiÞρmðiÞ; (6)

where i represents the mineral constituents and Vm and ρm are their
volume fraction and density, respectively.

Sand facies

We compute the bulk and shear modulus of the solid phase Ks

and Gs using the Voigt-Reuss-Hill average (Hill, 1952) as

XV ¼
XN
i¼1

fiMi ; XR ¼
�XN

i¼1

fi
Mi

�−1

; XVRH ¼XV þXR

2
;

(7)

where X is to be substituted by Ks and Gs, fi is the volume fraction
of the mineral; and Mi is the elastic modulus of the mineral.
We assume that the sand facies is characterized by a constant

amount of contact cement, so that porosity varies only due to non-
contact pore-filling material, that is, poorly sorted (Avseth et al.,
2000). The rock-physics model for this scenario is the “constant ce-
ment theory” (Avseth et al., 2000). This model requires the need to
compute the moduli Kb and Gb at the initial sand pack porosity
ϕb derived from contact cement deposition from contact cement
theory (Dvorkin and Nur, 1996). Contact cement theory and various
parameters involved in the rock-physics computations are described
in Appendix A. The theoretical background and detailed descriptions
of rock-physics models can be found in Avseth et al. (2005), Mavko
et al. (2009), and Dvorkin and Gutierrez (2014).
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Figure 3. The training image used by the multipoint geostatistical
algorithm.

Table 1. Elastic properties and density of minerals and fluids.

ρ (g∕cc) K (GPa) G (GPa)
Sand

vol. frac.
Shale

vol. frac.

Minerals

Clay 2.50 21.0 9.0 0.00 0.85

Quartz 2.65 36.6 44.0 0.65 0.15

Feldspar 2.63 75.6 25.6 0.20 0.00

Rock fragments 2.70 80.0 20.0 0.15 0.00

Fluids

Brine 0.99 2.57 — — —
Oil 0.70 0.50 — — —
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We compute Kdry and Gdry from constant cement theory (Avseth
et al., 2000):

Kdry ¼
�

ϕ∕ϕb

Kb þ 4Gb∕3
þ 1 − ϕ∕ϕb

Ks þ 4Gb∕3

�
−1

−
4Gb

3
;

Gdry ¼
�

ϕ∕ϕb

Gb þ z
þ 1 − ϕ∕ϕb

Gs þ z

�
−1

− z (8)

and

z ¼ Gb

6

9Kb þ 8Gb

Kb þ 2Gb
: (9)

The next step is to compute the elastic moduli for the saturated rock
Ksat and Gsat using Gassmann’s equation (Gassmann, 1951):

Ksat ¼ Ks

�
ϕKdry − ð1þ ϕÞKf

Kdry

Ks
þ Kf

ð1 − ϕÞKf þ ϕKs − Kf
Kdry

Ks

�
(10)

and

Gsat ¼ Gdry: (11)

Finally, the isotropic VP formula is used as

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4

3
G

ρ

s
: (12)

Shale facies

The P-wave velocity for shale facies is modeled by using Gard-
ner’s relationship (Gardner et al., 1974) as defined for the Stanford
VI model:

VP ¼
�
ρ

d

�1
a

; d ¼ 1.75; a ¼ 0.265; (13)

where ρ is expressed in grams per cubic centimeter.

Seismic modeling

We examine zero-offset seismograms measured on top of each
column of voxels, for a total number of 1900 traces. To compute
the seismograms uðtÞ, we convolve the reflection coefficient series
with a 50-Hz Ricker wavelet:

uðtÞ ¼ RðtÞ �WðtÞ; (14)

where RðtÞ is the reflection series in time t andWðtÞ is the wavelet.
These computations are carried out in the frequency domain ex-
ploiting the Hermitian symmetry for the Fourier transform of a
real-valued input signal. The time-dependent series of reflection co-
efficients is computed first using the velocity and density model to
obtain impedance, then a conversion from depth to time and finally
computation of the reflection coefficients. For simplicity, the wave-
let is assumed to be known, which is often not the case in practice.
In the latter case, the uncertainty on the wavelet can, in principle, be
included in the algorithm.

Sampling the posterior

The next step in the extended Metropolis algorithm is to define a
likelihood function. We model the measurement errors as having a
Gaussian distribution; hence, given a nonlinear forward model
gðmÞ, we arrive at a likelihood function in the form of the following
equation:

LðmÞ ¼ k exp

�
−
1

2
ðgðmÞ − dobsÞTC−1

D ðgðmÞ − dobsÞ
�
;

(15)

where CD ¼ Cd þ CT represents the covariance of the data Cd plus
the uncertainty associated with the forward modelization CT be-
cause we assume both of them to be Gaussian distributed (Tarantola,
2005).
Finally, the posterior distribution is sampled by running Algo-

rithm 2, using samples from the prior as input and performing the
forward calculations to obtain the likelihood function and use it in
the Metropolis sampler.

Results and discussion

Using the method described above, we ran Algorithm 2 to pro-
pose a total of 50 × 106 models to the Metropolis sampler. We retain
only one model out of every 100 in the collection of solutions to
ensure independence. This last value can be obtained using corre-
lation between realizations. Figure 4 shows the facies starting model
used in this numerical study. Figure 5 depicts likelihood as a func-
tion of the number of proposed models. The porosity mean values
for the inversion are 0.25 and 0.07 for sand and shale, respectively,
different from the reference model to simulate some uncertainty.
The so-called burn-in phase, a typical feature of McMC algorithms,
is clearly visible, spanning approximately 25 × 106 iterations. In
this random-walk phase, beginning from the initial model, the pro-
gram searches for regions of high probability in model space. The
models resulting from burn-in are thus discarded and not part of
the solution of the inverse problem. This run took approximately
six days on a 2.6-GHz six-core desktop computer. The amount of
memory used is quite limited, in this case being approximately
50 MB per processor.
We end up with a collection of models representing samples of

the posterior distribution that can be used to estimate subsurface
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Figure 4. The starting model used to initialize the McMC algo-
rithm in the numerical study.
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properties and their relative probabilities/uncertainties. Every pos-
terior ensemble model represents a solution of the inverse problem,
being consistent with the prior information and fitting the measured
data. Figure 6 depicts randomly picked facies models. Once we

obtain the ensemble of solutions, we can use equation 3 to query
the database about several different aspects because it represents a
complete inverse problem solution.
The uncertainty of results is affected by several factors such as

noise in the data, the accuracy of the forward model and, in the case
of multipoint statistics, the uncertainty related to the training image.
The training image represents a technique to describe the geologic
knowledge of the area under study that, in real cases, can be insuf-
ficient. This may result in wrong assessment of the structures in the
subsurface therefore biasing the inversion process. Because of this
reason, careful study of the area is needed when using training im-
ages. Nevertheless, similar issues concerning uncertainty arise also
when more classical Gaussian priors are used. In our numerical ex-
periment, the training image is not optimal because the structures
are only partially similar to those of the reference model to simulate
a real case.
We now discuss a few examples of the kind of information that is

possible to retrieve. The first target is porosity. We calculate the
average model of porosity using 250,000 models
from the posterior collection (Figure 7). Overall,
this model is in good agreement with the reference
one. However, in some specific areas, it is not
matching the reference value. This uncertainty can
be due to the effect of the noise on the data; i.e.,
different models fit equally well the observed
data and thus posterior porosity distribution
may result in being multimodal. In our numerical
experiment, the spatial correlation of porosity is
determined by the spatial occurrence of facies be-
cause the mean of the distribution of logarithmic
porosity depends on facies, producing sharp
changes of porosity at the transition from one fa-
cies to another one. This limitation is necessary to
restrict the computational cost; however, in prin-
ciple, it would be possible to include a more so-
phisticated approach to handle spatial correlation
of porosity. We compute the value of porosity at
two particular locations, one at ðx; y; zÞ ¼
ð1500; 3500; 20Þ m and the other at (200, 200,
0) m, obtaining a histogram of porosity (Figure 8).
The histogram provides the ranges of possible val-
ues and their probability. The red histogram in

Figure 8 shows a prominent peak approximately 0.30. The peak in-
dicates that porosity in that particular location is well resolved, with a
very low probability between 0.21 and 0.28, indicating a small degree
of uncertainty. The values spanned by this histogram suggest we are
in the presence of a sand facies because the mode value of porosity is
approximately 0.30. The blue histogram in Figure 8, on the other
hand, is significantly multimodal, very narrow, and peaked around
0.05 with a secondary peak at approximately 0.07, indicating a more
uncertain estimation of porosity at that location. In this case, the range
of porosity values spanned suggests we are in a shale facies.
Another example of information inferred from the posterior col-

lection of models is the computation of the probability to have sand,
equivalent to channels in our simplified model, in the 3D volume
of the reservoir model. Figure 9 shows a representation of the prob-
ability of having sand seen from above and below, and it also de-
picts the morphology of channels as derived by the ensemble of
solutions. Because facies is a categorical variable, it is possible

Figure 5. Negative logarithm of likelihood as a function of the
number of current model.
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Figure 6. Four randomly chosen facies models during the iterations (including burn-in).
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Figure 7. The average porosity model computed using the posterior
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to calculate a facies probability map, for instance, focusing on sand
as in our example, by counting the number of occurrences of each
facies in each voxel for every model and dividing this number by the
total number of models. The shape of the sand patterns shows a high

degree of continuity in the channels. This feature is provided by the
prior information as defined by the training image that, by means of
geostatistical techniques, helps in maintaining spatial continuity in
the structure of the models.

CONCLUSION

Analysis of target zones within a reservoir using Monte Carlo
methods provides a comprehensive characterization of the posterior
probability density, enabling us to perform uncertainty analysis.
The McMC method grounded in the probabilistic approach to in-
verse problems can handle the nonlinearities within the forward
model, such as the rock-physics model, and perform a simultaneous
inversion allowing an unbiased estimate of uncertainties. We pro-
pose a methodology to fulfill these requirements that, using a par-
allelized version of the extended Metropolis algorithm, provides
samples of the posterior distribution that represents a complete sol-
ution to the inverse problem. Samples from the prior distribution are
provided by a geostatistical algorithm ensuring spatial continuity of
the depositional structures designed in the prototype model. The use
of informed priors reduces the search space thereby proposing only
models consistent with a priori information.
This methodology integrates different kinds of information

(geostatistical, petrophysical, seismic) into a single algorithm and
is well suited to additional information input such as well log data,
other measured geophysical data, and different forms of prior infor-
mation.
We performed numerical experiments to test our methodology

showing that it is possible to invert a relatively large number of
parameters and provide advantages in terms of characterization of
the posterior distribution. From synthetic measured seismic reflec-
tion data, we infer facies and porosity models and associated
relative uncertainties. The database of solutions obtained is then
queried to extract information we are interested in because it rep-
resents a complete solution to our inverse problem. Indeed, specific
questions such as the probability of having a certain stratigraphic
feature in the model, whose answers are difficult to obtain with tra-
ditional methods, are easily addressed within this framework.
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APPENDIX A

ROCK PHYSICS

The parameters used in this numerical experiment, following the
Stanford VI setup, are critical porosity ϕc ¼ 0.38, constant cement
starting porosity ϕb ¼ 0.37, coordination number n ¼ 9, P-wave
calcite cement modulus Mc ¼ 120.9 GPa, calcite cement shear
modulus Gc ¼ 32 GPa, and calcite cement Poisson’s ratio
νc ¼ 0.32.
The Poisson’s ratio of the solid phase of the rock νs is calculated

from

Figure 8. Histogram of porosity at two locations in the model ob-
tained from the posterior collection of models.
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νs ¼
1

2

Ks∕Gs − 2∕3
Ks∕Gs þ 1∕3

; (A-1)

whereas νc is assumed to be known.
The bulk modulus for fluid Kf is computed using the Reuss

lower bound (isostress) as

Kf ¼
�X2
i¼1

SfðiÞ
KfðiÞ

�−1
: (A-2)

The Kb and Gb from contact cement theory (Dvorkin and Nur,
1996) are calculated from

Kb ¼
nð1 − ϕcÞMcSn

6
(A-3)

and

Gb ¼
3Kb

5
þ 3nð1 − ϕcÞGcSτ

20
; (A-4)

in which the various coefficients are given by

Sn ¼ Anα
2 þ Bnαþ Cn

An ¼ −0.024153Λ−1.3646
n

Bn ¼ 0.20405Λ−0.89008
n

Cn ¼ 0.00024649Λ−1.9846
n

Sτ ¼ Aτα
2 þ Bταþ Cτ

Aτ ¼ −10−2ð2.26ν2s þ 2.07νs þ 2.3ÞΛ0.079ν2sþ0.1754νs−1.342
τ

Bτ ¼ ð0.0573ν2s þ 0.0937νs þ 0.202ÞΛ0.0274ν2sþ0.0529νs−0.8765
τ

Cτ ¼ 10−4ð9.654ν2s þ 4.945νs þ 3.1ÞΛ0.01867ν2sþ0.4011νs−1.8186
τ

Λn ¼
2Gc

πGs

ð1 − νsÞð1 − νcÞ
1 − 2νc

;Λτ ¼
Gc

πGs

α ¼
�
2ðϕc − ϕbÞ
3ð1 − ϕcÞ

�1
2

: (A-5)

where Gs and νs are the shear modulus and Poisson’s ratio of the
solid phase of the rock Gc and νc are the shear modulus and the
Poisson’s ratio of the cement, and α is the ratio of the radius of
the cement layer to the grain radius when cement is deposited
evenly on the grain surface.
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